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1. INTRODUCTION  
Real-time  communications  are  increasing  over  the  web  and  there          
is  no  standard  congestion  control  algorithm  defined  for  WebRTC          
(eg.,  video  conferencing  and  live  stream),  leaving  services  to  find           
their  own  CCA  to  use  when  implementing  their  platform.          
However,  there  is  no  standard  congestion  control  algorithm         
(CCA)  defined  for  WebRTC,  leading  to  services  having  to  create           
or  find  their  own  CCA  to  use  on  their  platform.  Hence,  the  IETF              
is  considering  three  algorithms  to  become  the  standard  for          
WebRTC:  SCReAM  [1],  GCC  [5],  and  Network-Assisted        
Dynamic  Adaption  (NADA)  [6].  NADA’s  core  congestion        
algorithm  creates  a  unified  congestion  signal,  including  packet         
loss,  queuing  delay,  and  explicit  congestion  notification  (ECN)         
markings  [3].  NADA  takes  this  approach  in  hopes  of  being  able  to             
react  to  fast  changes  in  the  network,  allow  for  weighted           
bandwidth  sharing  for  multiple  competing  video  streams,  and         
sustain  a  significant  amount  of  bottleneck  bandwidth  when         
competing  with  TCP  [6].  NADA  is  one  of  the  algorithms  being            
considered,  but  we  do  not  know  if  it  is  fair  to  other  CCAs  when  a                
NADA  flow  competes  with  a  legacy  CCA.  Earlier  work  on           
congestion  control  intends  to  satisfy  two  criteria  for  real-time          
media  traffic:  TCP-friendliness  (outgoing  rate  is  equal  to  a          
comparable  TCP  flow)  [4]  and  media-friendliness  (media        
streaming  rate  stays  smooth)  [2].  Our  focus  is  on  the  former,            
TCP-friendliness,  and  it  leads  to  the  question: Is  NADA  fair  to            
other   algorithms   deployed   on   the   Internet?   

 We  answer  this  question  by  studying  NADA  in  a  controlled            
ns-3  environment  against  TCP  Reno,  TCP  Cubic,  and  itself,          
varying  testbed  configurations  to  understand  if  NADA  is  fair          
enough  to  be  considered  the  standard  algorithm  for  WebRTC.  We           
found  that  NADA  usually  takes  less  than  its  fair  share  of            
bandwidth,  but  in  some  situations,  like  competing  against  multiple          
NewReno   flows,   can   take   more   than   its   fair   share.  

2. SETUP  
We  used  a  discrete  event  network  simulator,  ns-3,  to  model  a            
simplified  version  of  real-time  media  congestion  and  evaluate         
real-time  media  CCAs  in  a  simulation  environment.  This         
ns3-rmact  implementation  is  created  by  Cisco  and  sends  fake          
codec  data  to  simulate  a  RTC  environment.  A  sender  application,           
RmcatSender ,  sends  media  packets  of  fake  video  codec  data  to           
the  receiver  application, RmcatReciever .  The  receiver       
application  gets  a  sequence  of  packets  and  timestamp  information,          
sending  it  back  to  the  sender  in  feedback  packets.  The  CCA            
running  on  the  sender  processes  feedback  information  to  obtain          
the  bandwidth  estimation,  using  this  information  to  estimate  to          
control  the  fake  video  encoder.  We  used  point-to-point  wires  in           
ns-3  to  implement  a  dumbbell  network  topology.  The  simulation          
environment  consists  of  a  10  Mbps  bottleneck  link  that  runs  for            
100  seconds.  We  configure  NADA  with  a  maximum  encoding  rate           
of   20   Mbps   and   a   minimum   encoding   rate   of   150   Kbps.   

 

 

 
Figure   1:   Bandwidth   (BW)   share   for   NADA   vs   TCP   NewReno  
at   default   parameters  
 

 
Figure   2:   NADA   v   TCP   NewReno   BW   share   when   varying  
NADA’s   minimum   BW   parameter  

 

Figure  3:  BW  share  for  NADA  v  Cubic  flows  with  default            
parameters  

 

Figure  4:  BW  share  for  NADA  v  Cubic  flows  with  a  buffer             
size   of   187.5   and   375+   packets   with   default   parameters  



3. RESULTS  
NADA   vs   TCP   NewReno   
Depending  on  the  configuration,  NADA  can  take  as  little  as  17%            
and  as  much  as  99%  of  the  fair  share.  Hence,  NADA’s  behavior             
ranges  from  very  unfair  to  very  fair  (generous).  Figure  1  shows            
the  percentage  in  bandwidth  for  two  competing  flows  sharing  the           
same  bottleneck  link.  NADA  is  much  more  complacent  when          
using  the  bottleneck  link  and  performs  poorly  when  competing          
against   NewReno.   

 When  testing  NADA  vs.  TCP  NewReno  with  varying  buffer           
sizes,  we  found  that  varying  the  queue  size  for  a  small  bottleneck             
bandwidth  (1.5  Mbps)  can  increase  the  NADA  rate.  However,          
when  the  link  is  at  the  default  link  rate  (10  Mbps),  NADA  stays  at               
the  same  rate,  continuously  taking  a  bit  more  than  17%  of  the             
bandwidth   versus   the   83%   for   NewReno.   

 Surprisingly,  an  increase  in  NADA’s  minimum  bandwidth  value          
can  make  NADA  extremely  unfair.  Figure  2  shows  competing          
NADA  and  NewReno  flows,  doubling  from  75  Kbps  for  each           
experiment.  Both  flows  take  their  fair  share  of  the  bandwidth           
when  the  minimum  is  around  5  Mbps,  but  the  higher  the            
minimum,   the   greater   amount   of   bandwidth   NADA   takes.   

 We  also  found  that  the  more  NewReno  flows  that  compete  with             
a  NADA  flow,  the more  bandwidth  NADA  takes.  Figure  5           
displays  this  surprising  finding,  demonstrating  that  NADA  takes         
around  80%  of  the  bandwidth,  leaving  only  20%  for  the  five            
NewReno  flows.  This  shows  NADA  is  unable  to  fairly  allocate           
bandwidth   to   multiple   competing   flows.   
NADA   vs   TCP   Cubic   
When  NADA’s  core  algorithm  competes  with  TCP  Cubic,  it          
continues  to  take  less  than  its  fair  share,  only  consuming  around            
one-third   of   the   bottleneck   link,   as   seen   in   Figure   3.   

 For  testing  NADA  against  Cubic  with  varying  queue  sizes,  we            
found  that  NADA  continuously  takes  less  than  its  fair  share  of            
bandwidth  for  all  buffer  sizes  above  375  packets,  but  for  a  buffer             
size  below  that,  the  queue  size  is  too  small  to  accommodate            
NADA   and   Cubic   at   steady   rates,   as   seen   in   Figure   4.   

 Varying  NADA’s  minimum  bandwidth  produces  similar  results         
as  compared  to  TCP  NewReno,  fair  around  5  Mbps,  but           
increasingly  becomes  more  unfair  and  takes  more  bandwidth         
away   from   TCP   Cubic.   
NADA   vs   NADA   
Figure  6  shows  NADA  versus  itself  with  one  fixed  RTT  flow  and             
another  with  a  varying  RTT,  finding  that  a  NADA  flow  with  a             
fixed  RTT  is  able  to  accommodate  other  NADA  flows  with           
sluggish  responses.  This  is  unusual  when  comparing  to  NewReno,          
as  NewReno  is  known  for  being  unfair  to  competing  flows  with            
higher  RTTs.  Knowing  this,  NADA  streams  with  varying  response          
times  will  be  able  to  coexist  with  each  other  if  deployed  on  the              
Internet   more   fairly   than   NewReno   flows   coexist   with   each   other.  

4. CONCLUSION   &   FUTURE   WORK  
We  seek  to  understand  if  NADA  is  fair  enough  to  be  considered             
the  standard  for  WebRTC  and  if  it  can  be  deployed  across  the             
Internet.  We  tested  its  fairness  against  other  widely  deployed          
algorithms  while  varying  various  network  and  protocol  properties         
and  found  NADA  does  not  take  its  fair  share  of  the  bottleneck  link              
when  competing  against  a  few  widely  deployed  algorithms  on  the           
Internet.  In  future  work,  we  plan  to  test  this  algorithm  against            
more  CCAs  (e.g.,  BBR,  SCReAM,  GCC)  and  consider  varying          
other  network  properties  (e.g.,  measuring  packet  loss).  We  also          
plan  to  investigate  why  NADA  is  aggressively  taking  bandwidth          
when   competing   with   multiple   Reno   flows.   

 

 
Figure   5:   Rate   for   one   NADA   vs   five   Reno   flows   sharing   a  
bottleneck   link   with   default   parameters  

 
Figure   6:   Rate   for   two   competing   flows   sharing   a   bottleneck  
link   with   a   fixed   (yellow)   and   varied   (blue)   RTT   flow  
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