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Abstract

Middleboxes, such as caches, firewalls, and intrusion detection systems, form
a vital part of network infrastructure today. Administrators deploy middleboxes
in diverse scenarios from enterprise networks, to datacenters, to access networks.
However, middleboxes are universally deployed under what we call the ‘unilateral
model’, where middleboxes are deployed and configured by administrators alone,
for the benefit of hosts in a single domain alone.

In this thesis, we present two new deployment models for middleboxes which
offer new capabilities for middlebox usage as well as new business models for mid-
dlebox deployment. Netcalls is an extension to the Internet architecture that allows
end host applications to invoke and configure middleboxes in any network their traf-
fic traverses; for example, we present a web server that invokes inter-domain DDoS
defense when it detects that it is under attack. APLOMB is a system that allows
enterprise networks (as well as individual end hosts) to tunnel their traffic to and
from a cloud service that applies middlebox processing to their traffic, avoiding the
costly and management-intensive burden of administering middleboxes in a local
network. Netcalls and APLOMB allow ISPs and cloud providers (respectively) to
monetize their deployment of middleboxes by offering them as a service to third-
party clients; all the while presenting new capabilities, in the case of netcalls by
enabling application interaction and in the case of APLOMB by providing better
scalability and easier management.

We discuss both of these proposals and their benefits in detail; we then discuss
challenges and opportunities towards their deployment and adoption.



Acknowledgements

Many thanks to my wonderful collaborators and undergraduate mentees, who not
only made all this work happen but made it a joy to develop. Vyas Sekar, Colin
Scott, Shaddi Hasan were the APLOMB team; Daniel Kim, Amy Tang, Seshadri
Mahalingam, and Steve Wang were the undergraduate team on the netcalls project.

I am greatly indebted to Arvind Krishnamurthy, who tried to get rid of me once but
still puts up with me nonetheless.

Finally, my advisor Sylvia Ratnasamy is not only my guide but my hero in research;
I’m looking forward to another n years of trying to emulate her as best as I’m
capable of.

1



Contents

1 Introduction 4

2 Netcalls: Programmable APIs to Middlebox Processing Services 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Client API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Service Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Discovery and Resolution . . . . . . . . . . . . . . . . . . 15
2.4.2 Network-to-Network Protocol . . . . . . . . . . . . . . . . 16
2.4.3 Service Implementation . . . . . . . . . . . . . . . . . . . 17
2.4.4 Extensions for Improved Availability . . . . . . . . . . . . 17

2.5 Securing Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Control Plane Security . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Data Plane Security . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 Resolution Server . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Netcall Clients . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.3 Applications and Services . . . . . . . . . . . . . . . . . . 22

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.4 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 APLOMB: Enterprise Middlebox Services in the Cloud 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



3.2 Middleboxes Today . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Middlebox Deployments . . . . . . . . . . . . . . . . . . . 39
3.2.2 Complexity in Management . . . . . . . . . . . . . . . . . 40
3.2.3 Overload and Failures . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Low Latency Operation . . . . . . . . . . . . . . . . . . . 48
3.3.3 APLOMB+ Gateways . . . . . . . . . . . . . . . . . . . . 51
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 APLOMB: Detailed Design . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Enterprise Configuration . . . . . . . . . . . . . . . . . . . 54
3.4.2 Cloud Functionality . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Application Performance . . . . . . . . . . . . . . . . . . . 60
3.5.2 Scaling and Failover . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Discussion and Conclusion 69

3



1 Introduction

Through the widespread deployment of middleboxes, networks today implement a
range of advanced traffic processing functions that go beyond simply forwarding
packets to inspect, transform and even store the packets they carry. That middle-
boxes play a central role in modern networks is, by now, widely recognized: reports
put the middlebox market at $6B [25]. The wide array of capabilities provided by
these devices provide valuable benefits in security and performance: e.g., enterprise
network administrators place middleboxes to enforce exfiltration policies, compress
traffic to save on bandwidth costs, or cache content to improve page load times; ad-
ministrators in cell phone networks uses middleboxes to NAT traffic and rewrite
HTTP content for optimized cell performance; and administrators in datacenters
use load balancers to distribute tasks across multiple servers and SSL terminators
to minimize their security vulnerability footprint.

Across these diverse deployment scenarios, the deployment model for middle-
boxes is nonetheless similar in that network administrators deploy middleboxes
strictly to provide service to devices within their administrative domain, and in
that network administrators exclusively configure the policies enforced by these
devices. This ‘unilateral’ deployment model allows a network administrator to in-
dependently implement a new network service within their own domain, without
requiring upgrades or changes to end hosts or other networks outside of the ad-
ministrator’s own domain. The successful proliferation of middleboxes today is
arguably due in some part to the simplicity of this unilateral deployment model.

However, in this thesis we argue that the unilateral deployment model – middle-
box services only for local traffic with a single policy specified by a local network
administrator – only scratches at surface of potential benefits from middleboxes.
We present two new deployment architectures for middlebox services, one called
Netcalls and the other called APLOMB. Both “break” the unilateral deployment
model by allowing ISP or cloud providers to expose their middlebox processing
capabilities to third party customers who route their traffic through the provider
network to receive processing. As we’ll illustrate, these designs (1) present new
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business models for the providers who expose access to their middleboxes, and (2)
enable new capabilities and use cases for middleboxes.

Netcalls, presented in Chapter 2, extends Internet Service Providers to expose
programmatic interfaces to the middleboxes they support, allowing clients to invoke
and configure middleboxes in any network their traffic traverses (so long as that net-
work supports the Netcalls extensions). Netcalls takes a broad notion of client, and
allows individual end host applications to customize the middlebox processing their
traffic receives. As we discuss in §2.6.3, this programmability allows applications
to make new and useful use of middlebox processing; we illustrate examples of
these new uses with a web server that invokes DDoS defense in the network when it
detects an attack, a web client that invokes traffic compression for large downloads,
and an Android service to preferentially connect to WiFi networks that support an
IDS for mobile phones.

APLOMB, presented in Chapter 3, focuses on enterprise middlebox deploy-
ments. Under APLOMB, middleboxes reside in the cloud and enterprises tunnel
their traffic to and from the cloud to receive processing; policy configurations are
still specified by administrators alone (rather than applications, as in Netcalls). As
we’ll show in §3.2, moving middleboxes to the cloud can alleviate major challenges
in enterprise network administration including administrative complexity, overload
failures, and high costs for provisioning.

As with all architectural proposals, a key challenge to adoption is “deploya-
bility” – if the burden of upgrade is too high, or a large number of users need to
adopt the upgrade before it is usable, it is unlikely that widespread adoption will
get off the ground. When considered for their deployability properties, APLOMB
and Netcalls can be seen at opposite ends of a spectrum. Netcalls is an expansive
design that allows end host applications to invoke and configure middlebox ser-
vices in any ISP their traffic traverses. Although the netcalls architecture operates
gracefully under partial deployment – the state in which only some clients and some
networks deploy a particular middlebox or even the netcalls architecture itself – it
nonetheless is a substantial leap from the state of middlebox deployments under the
unilateral model. Why should networks service providers invest in programmable
middleboxes when today there exist no applications that can invoke them? Why
should application developers write code to invoke middlebox APIs that are un-
supported by every major network? This ‘chicken and egg’ problem among other
deployability challenges, hinders immediate adoption of a netcalls architecture.

APLOMB, at the opposite side of the spectrum, proposes a more limited – but
more deployable architecture. Rather than ISPs exporting the services of their mid-
dleboxes, APLOMB clients tunnel their traffic to the cloud to receive middlebox
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processing. APLOMB’s target client is not application developers, but enterprise
administrators – a known, existing market for a cloud provider to offer their middle-
box services to. Indeed, a handful of startups today offer APLOMB-like solutions
for WAN optimization [6] and intrusion detection [26].

We discuss deployability challenges for APLOMB and Netcalls in Chapter 4,
where we return to our comparison of the two architectures and how APLOMB
can be used to partially implement Netcalls as a step towards full deployment of a
netcalls-like service.

We now turn to the architectures themselves in detail. In Chapter 2, we describe
netcalls and in Chapter 3 we discuss APLOMB. In Chapter 4 we return to our
deployability discussion and then conclude.
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2 Netcalls: Programmable APIs to Middlebox Pro-
cessing Services

2.1 Introduction

In this chapter, we present netcalls, an API by which endpoints interact with mid-
dlebox services in the network. With netcalls, networks that deploy middleboxes
expose an interface to other networks announcing what middlebox services they
provide, and an interface to end host applications allowing applications to specify
what middlebox services they would like performed on their traffic. With netcalls,
end host applications see the abstraction of a single logical network with named
services that can be turned on/off, or configured.

We face two challenges in designing netcalls. The first is that, ideally, we want
an API that is general and yet middleboxes are inherently diverse, spanning a va-
riety of goals (e.g., security, performance, interoperability), configuration require-
ments (e.g., configuring filter rules vs. caching policies vs. cryptographic keysets)
and topological requirements (e.g., WAN optimizers placed at both endpoints of
communication vs. proxies placed once near web clients). The API we design must
thus walk a fine line between generality and accommodating the specialized needs
of different middlebox services.

The second challenge is that the “backend” network architecture required to
support the netcalls API, must meet the high standards for deployability set by mid-
dleboxes; to do otherwise would be to lose the key to the success of middleboxes.
Operators today can unilaterally deploy and use a middlebox whether or not another
network or user does so.1 In this spirit, we aim for a design that accommodates the
partial adoption of every mechanism we introduce. Hence, our solutions must as-
sume that some networks will deploy a particular middlebox service while others

1We note that, by definition, our solutions cannot attain the same ease of deployment as middle-
boxes – applications that choose to use our APIs will require modification and interdomain operation
fundamentally requires that two networks cooperate.
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may see no incentive to do so; that an application built using our netcalls API might
communicate with legacy applications that do not; and that while some networks
implement the backend support for netcalls, others will not.

Approach. Netcalls addresses the above challenges through a design that de-
composes service use into three distinct interactions between the user and network:
service initialization, configuration and invocation.

To initialize a service in a general manner, netcalls introduces the concept of a
placement pattern which is a logical description of where in the network the user
wants a service initialized. On receiving a client’s initialization request, the net-
work identifies network domains that offer the requested service and satisfy the
placement pattern. The selected networks then configure their internal routers to
direct the client’s traffic to appropriate middleboxes. Once service has been initial-
ized, the network returns a handle to the user and internally maintains state mapping
the handle to the selected service-providing domains. When the user later tries to
configure the service, it can do so using service-specific configuration requests and
this handle (plus the network state) ensures that these requests can be directed to
service-providing domains that know how to interpret them. Thus initialization is
completely general while service-specific configuration requests are “steered” in a
general manner.

To ensure deployability, networks calls for initialization and configuration occur
on the control plane, decoupled from the actual service processing of data plane
traffic. As legacy traffic flows through a service-providing network, if it matches
the users’ initialization request it is routed via a middlebox offering the service.
Thus, the data plane requires no change to packet formats or interdomain protocols
and is compatible with existing router and middlebox equipment.

Why Netcalls? The traditional viewpoint [33, 54, 67] is that the transparent
nature of middleboxes leads to unexpected interactions (e.g. end-to-end violations)
and management complexity (e.g., hijacking). Exposing middleboxes to endpoints
would bring previously hidden behaviors into the open and ease these problems.
While there is certainly merit to this argument, we propose that the greater benefit
may be one of opportunity rather than remedy: a general API to middleboxes will
enable new application models (for end-users and online services) and new business
models (for operators).

From the perspective of endpoints, there are many scenarios where applications
would benefit from such APIs. For example, we used netcalls to build a webserver
whose QoS/load monitoring module initiates in-network DDoS protection, and an
Android WiFi interface that preferentially connects to networks that deploy intru-
sion detection tailored to mobile phones. Many more such examples are possible.

8



Logical Service Network

 

A

Client

INIT: BasicFirewall?

ACK! Handle: 0FB523DE...

CONFIG: Block 9.8.7.6?

ACK! 9.8.7.6 blocked!

1

2

3

4
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Moreover, looking forward, we anticipate a growing role for network services due
to the trend towards lightweight client devices that will increasingly rely on cloud-
based services. In such a world, the network’s impact on user experience grows and
hence so does the potential for network optimizations, e.g. through “opportunistic”
WAN optimization between clients and servers, or network caching in cooperation
with cloud services.

From the perspective of network providers, a standard and general API by which
endpoints must explicitly request advanced services offers a hook around which to
build new accounting and business models, potentially expanding opportunities for
providers to monetize their deployment of new features.

In the rest of this paper, we describe the netcalls API and supporting architecture
(§2.2-§2.5) and the implementation of netcall applications (§2.6). We then evaluate
netcalls (§3.5), discuss related work (§2.8), and conclude (§2.9).
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2.2 Overview

We now present an overview of the netcalls architecture and design rationale. Net-
calls present application developers with a simplified abstraction of a single logical
network with a capability that can be turned on, off, or configured. To application
developers, the abstraction of a single logical network is appealing for its simplic-
ity – the client only specifies what service it wants invoked. Nevertheless, imple-
menting this abstraction is challenging because the logical network is in reality a
large-scale federation of independent networks each with their own policy and de-
ployment goals.

To start, we consider a client application requesting a firewalling service called
BasicFirewall:

fw = BasicFirewall.init(...);
fw.block("9.8.7.6");

Figure 2.1 illustrates the interaction between client and network for the above re-
quest. First, the client requests (1,2) the network to initialize the firewall service on
its incoming traffic, after which the network will direct the client’s inbound traffic
to traverse a firewall device. Then, in (3,4), the client requests configuration of its
firewall service, adding a new rule to its access control list; the network updates the
firewalling devices accordingly.

Before discussing any technical mechanisms behind this process, we assign ter-
minology to Fig 2.1. We refer to named capabilities like BasicFirewall as services,
identified by a service name. Clients use netcalls to initialize and configure ser-
vices. Initialization (the first step in Fig. 2.1) refers to instructing the network to
redirect the client’s traffic to a device that performs the requested service. We refer
to ‘configuration’ when clients specify service-specific customization, e.g. adding a
rule to a firewall, specifying a cache timeout policy for a proxy, or requesting sum-
mary statistics from a traffic monitor. The configuration step is service-specific in
that it would not make sense to specify a cache timeout policy to a firewall, or add a
filtering rule to a traffic monitor. Hence, each service name is associated with a set
of functions defined independently for each service. For BasicFirewall, add rule
is such a function.One final step not illustrated in Fig. 2.1 is invocation, when the
client’s packets traverse the network and trigger service processing.

Returning to our example, we now consider the network’s perspective, shown in
Fig. 2.2. When the client initializes BasicFirewall, it directs its request to a server
hosted by the ISP (AS 1, in Fig. 2.2) that serves as its “service access provider”. In
our example, we assume this ISP does not implement the BasicFirewall service and
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hence it looks for one or more external ISP(s) that do support BasicFirewall. For
this, the ISP consults some autonomous system (AS) level topology information
that it has gathered, and selects two external ISPs (ASes 2 and 4) who together
serve all of the client’s inbound traffic. It forwards the client’s initialization request
to these two external ISPs, and after their acknowledgments, it stores a record of the
client’s request and the selected ASes and returns an acknowledgment and a service
handle to the client. When the client requests to add a rule to the BasicFirewall, the
handle allows the ISP to recall which external networks are providing service for
the client, and then forward the client’s request to them.

We refer to any network that deploys a service like BasicFirewall as a service
network; in Fig. 2.2 ASes 2 and 4 are service networks. AS 1, on the other hand,
serves as a resolution ISP or RISP; we refer to the server in the RISP’s domain that
the client directs its requests to as a resolution server. We assume that each client
contracts with one or more networks to serve as its RISP. We say ‘contracts with’
because we expect that providers will charge for access to services. Correspond-
ingly, when a RISP forwards a request to another service network, there must be a
contractual relationship in place between the RISP and the other network. Service
networks that a RISP settles with are called the RISP’s service peers.

Design Rationale
A core goal in each of our design choices is to adapt to partial deployment of any
mechanism we introduce.

RISPs. As described above, clients only convey netcalls to a resolution server
hosted at a single network, the client’s RISP. We chose this model for two reasons.
First, it simplifies application logic. Consider a client invoking some service S that
it requires once, on the forwarding path from itself to a destination D. Where are
there devices that can perform S? How does D direct its traffic to these devices? By
making these questions the responsibility of a RISP, application developers don’t
have to write logic for discovering where and how services are performed in the
network. Second, contacting only a single RISP simplifies the process of paymen-
t/settlement. Client payments for interdomain services require a contract with a
single ISP, rather than several (just as they pay for Internet service today). ISPs
maintain a contract with clients (just as they do today) and service peers, networks
who they have business relationships with for services (just as they have peering
relationships for traffic exchange today).

API Design. Directing traffic through a RISP leads to a new challenge: how
is the RISP able to resolve requests to services that it does not support itself? For

11



example, in resolving a client’s initialization request, how is the RISP to know that a
firewall should be applied once on inbound traffic, but that a WAN optimizer should
be deployed twice at the endpoints of communication? We resolve this by adding
a set of parameters called a placement pattern to a clients initialization request:
placement patterns are a general abstraction by which clients describe where in the
network to place the service. We describe placement patterns in depth in §2.3.

Statefulness. When a netcalls client initializes a service, the network stores
state related to the client’s request. Keeping state in the network allows netcall
clients to invoke services even on traffic from end hosts who have not adopted
netcalls – this is important given the prevalence of client-server communication and
that clients and servers may not share the incentive to adopt netcalls. Consider the
alternative – common in most network designs [83, 69, 85] – in which packets must
contain a new header describing their service demands. Embedding a new service
header means the sender must have adopted the service; if the sender does not
support the new service, it cannot be used. However, for services like BasicFirewall
the receiver is the endpoint that wants service processing, not the sender. With
netcalls either the sender or the receiver can request processing features; it is not
necessary for both hosts to adopt netcalls for one of the hosts to initialize services
independently.

Best Effort Availability. As a fundamental consequence of partial deployment,
netcalls must accept a service model of best effort service availability. A client
application may request a service that is not supported by any appropriately placed
network, in which case the network will return an error informing the client that the
service is unavailable. No architecture can compensate for a service the network
simply doesn’t offer. As a consequence, applications must be prepared to adapt to
service unavailability. For example, in §2.6 we’ll show a mobile phone that turns
on extra local anti-virus when connecting to a network that does not support an
intrusion detection system.

2.3 Client API

We now describe the netcalls API in detail. As mentioned previously, clients send
their netcall requests to a resolution server in its RISP.While our discussion treats
the resolution server as a single entity, it can be replicated using standard ap-
proaches.

The core function in the client-RISP protocol is INIT, which the client uses to
initialize a service. The parameters for the INIT function are shown in Table 2.1.
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Parameter Parameter Options
Service Name Client’s desired service.

Traffic Filter
Traditional 5-tuple (sender’s IP or prefix, receiver’s IP or prefix,
sender’s port, receiver’s port, protocol) for which matching traffic
should traverse the service. Entries may be wildcarded.

Incoming, Out-
going, or Bidi-
rectional

Whether the service should be applied on traffic: (1) to, (2) from,
(3) to-and-from the requester.

Frequency
How many times the service needs to be supported on the traffic’s
path. (1) once, (2) twice, (3) as many times as possible, (4) at every
hop of the path.

Proximity
Whether the service is required (1) in the client’s network, (2) in
the remote endpoint’s network, (3) near the clients network, (4)
near the remote endpoint’s network, or (5) in a specific ASN.

Coverage
In the case where the placement pattern cannot be fully satisfied,
whether (1) partial coverage is acceptable, or (2) complete cover-
age is a must.

Table 2.1: Parameters for INIT requests.

The first three are the service name and two parameters expressing what subset of
the client’s traffic the service should apply to (e.g. “all outgoing traffic on Port 80
to 1.2.3.4”).

The lower three parameters address a core challenge for the netcalls API: that
the RISP may not know anything about the service’s functionality. Without infor-
mation beyond the service name, the RISP has no way to learn that a firewall should
be performed once on inbound traffic, while a WAN optimizer should be applied
on outbound traffic at both endpoints of communication. To express these topolog-
ical requirements, the lower three parameters form a placement pattern, a general
model that captures how and where the network should apply the service. The three
properties described by these parameters are (1) Frequency, how many instances of
the service should that traffic should traverse en route between source and destina-
tion; (2) Proximity, whether the service is required in the client’s network, receiver’s
network, or somewhere in between; and (3) Coverage, is it acceptable if service is
only available for a subset of the requested traffic (e.g., ‘covering 4 of 5 incoming
paths’).

Using the coverage, frequency, and proximity parameters, the client can spec-
ify diverse placement patterns; Figure 2.3 illustrates three placement patterns that
appeared repeatedly in the usage scenarios we considered. The ‘Individual’ pattern

13



AS1
AS2

AS1
AS2

AS1
AS2

(a) Individual (b) Perimeter (c) Path

Fig. 2.3: Common INIT request Placement Patterns.

(2.3a) allows a client to name a specific AS in which service should be imple-
mented, defined by a frequency of once, and a proximity of ‘in ASN X’. Another
placement pattern, useful for many security services, is a ‘Perimeter’ placement
(2.3b), specified by a wildcarded ‘remote’ network (thus requiring the service on
paths to all networks), a frequency of once, a proximity of ‘near the local net-
work’ and with ‘partial coverage acceptable’. Firewalls, intrusion detection sys-
tems, and traffic monitoring services all might use this pattern. Finally, a ‘Path’
(2.3c) placement is specified with a traffic filter to a single IP address/prefix and
variable frequency and proximity values – a WAN optimizer might specify a fre-
quency of twice, at both the source and destination networks, while a bandwidth
reservation service might specify a frequency of ‘at every hop along the way’, with
no proximity parameter.

After initializing the service (as described in §2.4), the RISP returns an identi-
fying service handle to the client. The RISP stores the service handle along with
a ‘service resolution record’ containing data about the client’s request including
which external networks are performing the service; the client can later use the
service handle to update or reconfigure the service it initialized using the four re-
maining API functions, shown in Table 2.2.

The resolution server sends an error back to the client if any request fails, ei-
ther because the service is not supported by any available network or because the
requested service violates the RISP’s policy. For example, a RISP might want to
restrict use of certain services – in an enterprise network which hosts a resolution
server, the enterprise’s server might drop all requests that attempt to manipulate
firewall settings. More importantly, a RISP must reject all requests to manipulate
traffic that the requesting client does not have authority over. We discuss the au-
thentication process in §2.5.1.
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Function Description
INIT Initializes a service. Described in §2.3.

CONFIG

Encapsulates a service-specific protocol (for example,
set rule: block 9.8.7.0/24 for a firewall). On
receiving a CONFIG message, the RISP maps the provided
service handle to the corresponding service ASes and forwards
the contents to these ASes.

KEEPALIVE
Extends the lifetime of the service, as the RISP periodically culls
long-living INIT state past its expiration date.

TERM Terminates the service.

GETCONFIG
Requests a list of all configurations (service handles, services, and
parameters from INIT messages) which apply to the client’s IP
address or prefix.

Table 2.2: Functions from the netcalls API.

2.4 Service Networks

We now detail the requirements for networks which support the netcalls API, either
as RISPs, service networks, or both. When a RISP receives a service initialization
request, it performs discovery and resolution to decide which external ISPs can
provide the requested service – we describe this in §2.4.1. We then describe the
protocol by which the RISP communicates with these external ISPs (§2.4.2) and
how networks implement services (§2.4.3). Finally, we discuss three extensions
networks may support to improve service availability (§2.4.4).

2.4.1 Discovery and Resolution
When (the resolution server at) a RISP receives a client’s INIT request, it must
select which networks are appropriate to perform the service. Appropriate networks
are those (a) with which the RISP has a contracted service peering relationship,
and (b) suit the INIT placement pattern. Understanding whether a network suits a
placement pattern requires that the RISP know the AS-level paths taken by traffic
to and from the requesting client.

For INIT requests involving outbound traffic from the client, the RISP must
know the AS-level paths from the client to remote destinations. This is trivial: the
RISP’s own BGP paths show which networks outbound traffic will traverse. INIT
requests involving inbound traffic to the client are more complicated since the RISP
must discover the incoming AS-level paths to the client. For this, our baseline so-
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lution is that the RISP queries its service peers to obtain the AS-level paths from
the service peers to the client, as well as the addresses of sources whose traffic tra-
verses these peer networks en route to the client (service peers can easily obtain the
latter information through measurement). Given the contractual agreement already
in place between the RISP and its service peers, it is reasonable to assume that ser-
vice peers will share such information. We find that, for all practical placement
patterns that we encountered, this is sufficient, i.e., peer-provided paths together
with knowledge of a RISP’s physically-adjacent domains give the RISP sufficient
path information to resolve requests. This is because service peers are the only (ex-
ternal) candidate networks at which service can be initialized and hence incoming
paths not included in the set of peer-provided paths would not be useful in any case.

One could, however, devise placement patterns that could not be answered with
peer-provided paths. For example, “place service at the AS two hops away from the
source” – since peer-provided paths only reveal the AS-path from (potential) service
networks to the client, but not from the source to these service networks, such a
request could not be resolved. Ideally, to cover all potential scenarios, one might
hope for a solution where all ASes share path information or a global topology
information service. As a practical approximation of the latter, our implementation
supplements (§2.6) peer-provided paths with path discovered by measurement [21,
19, 59]. Ultimately, if the available topology information is insufficient for the RISP
to resolve the request it would respond to the user with an error; the client may try
again with a different placement pattern or forego service (which all clients must be
capable of given the expectation of only partial deployment).

2.4.2 Network-to-Network Protocol
Just as ISPs expose a resolution server with an API for clients, ISPs also expose
a server and API to other networks. For simplicity, we refer to this inter-network
server as a resolution server as well. We briefly summarize two functions from
the network-to-network API here. The SVC REQUEST function allows a request-
ing network to initialize, configure, and terminate services in an external network
by encapsulating the client’s original INIT, CONFIG, and TERM requests. The
INFO REQUEST function allows an ISP to inform other networks whether or not
it supports a service, whether a service is still active, and share its AS-level paths.
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2.4.3 Service Implementation
When a service-providing network accepts a new request, it arranges to support
the service internally in a manner inspired by SDNs [66, 42, 61], and recent work
on middebox management [74]. The resolution server pushes {traffic-filter, mbox-
address} mappings to the appropriate switches within the network, where ‘traffic-
filters’ are defined in terms of the 5-tuple traffic pattern from the user’s INIT request,
and ‘mbox-address’ is the network address of the middlebox offering the service.
Incoming traffic at a switch is matched against the traffic pattern entries, and traffic
matching a filter is redirected to the corresponding middlebox.

2.4.4 Extensions for Improved Availability
Our basic design allows clients to invoke services in any network which their RISP
peers with and which their traffic traverses. We now describe extensions which
networks can optionally support to expand availability.

Multipath routing. This optimization aims to improve availability for ‘Path’
services in the event that the default AS path does not include an appropriate service-
providing network. In such cases, the RISP may provide increased availability by
considering alternate policy-compliant AS paths. We chose MIRO [84] as our mul-
tipath routing solution because it is simple, backwards-compatible with BGP and
functions through bilateral agreements in a manner that does not require the partic-
ipation of every AS on the path.

Remote RISPs. To expand its a customer base (and provide service access to
clients whose ISPs are not netcalls-aware), an ISP may serve as a RISP for end
hosts who receive connectivity service from another network. The client tunnels its
outgoing traffic via the RISP, then the RISP can use the same strategy for topology
and routing discovery as it does for its direct customers. This extension allows
non-access networks, such as cloud providers, to serve as RISPs (as in [76]).

Service brokers. Our discussion so far has assumed a RISP only negotiates
with service-providing ASes with which it has a direct agreement regarding settle-
ments. While simple, it can be unrealistic for a RISP to maintain service peering
relationships with a large number of other networks and this might lead to low avail-
ability of services. Brokers address this concern. If a RISP A wishes to invoke a
service in an AS C with whom it does not (service) peer, but both A and C are peers
of a third AS B, then AS B may serve as a ‘broker’ for the exchange between A
and C. This extension is not part of the base design because to do so with proper
authentication (discussed in §2.5) requires deployment of a PKI.
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2.5 Securing Services

Securing the netcalls architecture requires both control plane security and data
plane security.2 Control plane security means that service initialization can only
occur when requested by a party who has ownership over the impacted traffic and
is able to pay for use of the service. Data plane security means that services only
apply processing to non-spoofed traffic belonging to the real client. The key chal-
lenge in ensuring both of these is doing so while remaining within our stringent
deployability requirements. In what follows, we present a qualitative description of
our solutions to securing netcalls.

2.5.1 Control Plane Security
For an ISP to accept a request to initialize a service – whether from a client/end host
or from a service peer – we must ensure that each request originates from an entity
with ownership of the impacted IP address or prefix. In the absence of a public key
infrastructure, netcalls rely only on the trust built in to commercial relationships
between clients and their ISPs and between ISPs and their service peers.

First, we consider client to RISP authentication: an AS A accepting an INIT
request from an end host C. If A is a managed domain (e.g. an enterprise), A may
accept a normal TCP handshake with no additional credentials as sufficient autho-
rization for C’s request. However, this model of authorization assumes that man in
the middle attacks are not a threat, and fails when a third party has access to C’s
network connection, e.g., when a home user invites a neighbor over who connects
their laptop to C’s IP address and invokes services without the home owner’s per-
mission. To protect against these scenarios, A may also provide C with a credential
allowing C to request services over TLS with both client and server authentication
enabled.

Second, we consider network to network authentication: an AS A accepting a
SVC REQUEST from one of its service peers, AS B. As service peers, A and B
exchange their public keys and allocated prefixes out of band. We assume that A
and B are truthful in their prefix exchange because peering relationships reflect real-
world trust; violation of that trust is cause for severance of the relationship and even

2Our aim is not to improve Internet security in general but merely to ensure that netcalls does
not introduce new security problems for either legacy or netcall-adopting clients. For example, we
do not resolve DDoS, although some of our envisioned services could be used to mitigate DDoS
attacks (i.e., firewalling services). DoS is a long-standing problem in the Internet architecture; the
netcalls architecture neither worsens nor improves this state.
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legal action. When B sends a SVC REQUEST to A, both B and A authenticate
each other using TLS with client-server authentication enabled. A then checks
that B’s request impacts traffic to or from a prefix owned by B – if not, A should
reject the request, since B does not have authority over the impacted traffic. If B’s
request does pertain to a prefix owned by B, A accepts the request. Although A
never validated the original INIT request, A trusts that B has done so, and knows
that even if B failed to do so, the only traffic that would be impacted by B’s failure
to perform proper authentication would belong to B’s own customers.

2.5.2 Data Plane Security
A 2009 study found that 34% [40] of networks do not prevent their users from
spoofing their source address. Exploiting this, an attacker might attempt to spoof
traffic in order to avoid service processing, or to receive service processing when it
otherwise wouldn’t.

This latter problem leads to attacks inflating service charges, analogous to at-
tacks on cloud services. Cloud providers deal with this threat not only through
technical means, but through practical pricing schemes; for example, by placing
caps on volume processed before shutting down, or by providing logging mecha-
nisms to allow customers to dispute false charges. We expect that middlebox service
providers will similarly develop responsible pricing schemes, however, we present
several mechanisms to address common attack scenarios below. Our goal is not
to ensure that ‘no packet generated by a spammer ever traverses a middlebox’, but
rather to restrict the magnitude of such traffic so that it cannot impact aggregate
traffic (e.g., 90th percentiles as commonly used for bandwidth pricing today).

Consider the following, in which an attacker A uses spoofed traffic to manipu-
late a client B’s service:
(1) To avoid undesired processing, e.g. security services, A sends traffic to B ap-
pearing to originate from an address B considers benign and has no security rule
for.
(2) To inflate B’s volume-based service charges, A sends traffic appearing to origi-
nate from B or en route to B spoofed as someone B frequently communicates with.
(3) To steal service processing, A sends his own traffic spoofed as B to another
endpoint he colludes with.

We present three techniques to address the above attacks, without requiring net-
call adoption by the attacker:

Exhaustive Service. Inbound services which the sender might find undesir-
able (primarily security applications) should be applied to all inbound traffic with
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a perimeter request. Under this INIT pattern, there is no way to avoid processing.
We find that this security policy parallels security policies enforced by typical en-
terprises: all traffic traverses firewalls, no matter the origin. This resolves attack
(1).

Connection Termination. For processing services that ‘terminate’ a TCP ses-
sion on bilateral traffic (e.g. WAN Optimizers or load balancers), spoofing attacks
are not possible. The middlebox maintains connections to (and hence completes
a handshake with) both endpoints, ensuring that neither endpoint is spoofed. This
solution can resolve attacks (2) and (3), but not for processing services that service
TCP bilateral sessions without terminating them, or observe only one direction of
traffic.

Shared SYN Cookies. For general TCP security, we introduce Shared SYN
Cookies, which leverage TCP SYN cookies to validate flows. Traditional SYN
cookies resolve “SYN Flood” attacks by allowing a server to identify ACK packets
for flows it previously SYN/ACKed, without having to keep state for the incomplete
handshake. The server sends SYN/ACK replies to SYN requests with specially
crafted sequence numbers; each sequence number includes a coarse timestamp, an
MSS value, and a cryptographic hash of the connection’s IP addresses, port num-
bers, and the timestamp. When it later receives an ACK in reply to its SYN/ACK, it
inspects the (Seq. Number - 1) value in the ACK and uses the hash to validate that
it represents a valid connection.

Shared SYN Cookies are generated using the same technique as normal TCP
SYN Cookies, but the client shares its key for generating the SYN cookie hash
with the middleboxes processing its traffic. Then, the client generates sequence
numbers for all of its connections (both those it initiates and those initiated by
another client) using SYN cookies. This allows the middlebox to validate even
unilateral traffic in a TCP session. Consider a connection between our client B and
another host, C. For traffic that appears to come from B, the middlebox inspects the
SYN or SYN/ACK where B announces its initial sequence number and validates
that the hash value originated with B. For traffic that appears to come from C, the
middlebox inspects the SYN/ACK or ACK where C replies to B’s initial sequence
number, and similarly validates the hash. After this, it can establish an entry in its
flow table for the session. Shared SYN Cookies safeguard against attacks (2) and
(3).
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2.6 Implementation

We prototyped the system components of the netcall architecture and three applica-
tions that use network services. We now describe: our prototype resolution server
(§2.6.1), the client-side libraries that implement the netcall API (§2.6.2) and our
three prototype applications (§2.6.3).

2.6.1 Resolution Server
Every network that exposes a netcall API deploys a resolution server. Our resolu-
tion server is a 4200-line Java web server exposing an RPC interface to end host
clients and to other resolution servers.We illustrate the software architecture of the
resolution server in Fig. 2.4.

The State Database stores: (i) a list of the clients for which the network serves
as RISP, (ii) a list of the network’s service peers, with the IP addresses of their res-
olution servers and the names of the services they offer, and (iii) service resolution
records (SRRs) for each client request that the network is currently servicing. The
Topology Service maintains a model of the AS graph and routes which it obtains by
combining local BGP routes, the network’s BGP peers, and INFO REQUEST re-
sponses from other networks. The Client API and Network API modules implement
the client-to-RISP and RISP-to-network protocols. The State Monitoring module
monitors BGP updates for route changes that impact SRRs in the state database and
updates these appropriately. If a BGP update disables a service by routing away
from a service-performing AS, the state monitor sends an error to the client.

The Local Service Manager and Service Plugins are used to configure the lo-
cal network to provide traffic-processing services. Our implementation currently
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assumes services are implemented by middleboxes and these middleboxes are de-
ployed adjacent to a switch at a network choke point. For our prototype deploy-
ments, we use Click-based [60] software switches and software middleboxes that
we run on general-purpose servers. The Local Service Manager maintains a Ser-
vice Plugin for each service supported by the network. Each plugin implements
a standard interface with functions to call for INIT, CONFIG, and KILL requests
and communicates with the switches and middleboxes as appropriate. E.g., on re-
ceiving an INIT request, the plugin for the requested service updates the switch to
divert traffic matching the INIT request to the middlebox in question. On receiv-
ing a CONFIG request, plugins either forward CONFIG requests to their associated
middlebox, or they implement some functionality at the Resolution Server itself.
We provide examples of different plugins for our prototype applications later in this
section.

2.6.2 Netcall Clients
We implemented the netcall protocol over XMLRPC, since it is simple to program
against in many languages. The raw RPC interface is not exposed directly to ap-
plication programmers. Instead, application developers simply import a library and
use service-specific functions like initialize firewall() or filter ip address(ip);
the library then generates the appropriate INIT and CONFIG requests. In Figure 2.5
we show an example of the code implementing the library (top), and the code imple-
mented by the application developer (bottom). As a consequence of these libraries,
extending an existing codebase to leverage network services is relatively simple as
we illustrate with the applications we describe later in this section.

Our implemented APIs allow any application to initialize any service for its
host – even for ports bound other applications. While the Resolution Server stops
malicious end hosts from interfering with the traffic of other end hosts, it cannot
protect against malicious processes on the same end host. Longer term, we expect
that OS support for the protocol will centralize netcall requests through a single,
privileged process. Applications, rather than communicating directly with the reso-
lution server, will instead submit their INIT request to the OS that will either reject
the request (based on local policies) or forward it to the resolution server.

2.6.3 Applications and Services
We modified three applications to use network services: (i) an Apache webserver
that initializes in-network filtering services for overload protection, (ii) a web client
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1 import org.netcalls.API.*;
2 public class CompressSvc{
3 ...
4 InitPathRequest p = new InitPathRequest(
5 localIP, dstIP, localPort, dstPort,
6 COMPRESSION_SVC_ID,
7 PathParams.BIDIRECTIONAL,
8 PathParams.ENDTOEND, ...
9 );

10 ServiceToken t = ServiceManager.init(p);
11 ... //configure service
12 return t;
13 }

1 import org.netcalls.API.*;
2 import org.netcalls.CompressSvc.*;
3 ...
4 ServiceToken t = CompressSvc.init(ip, port);
5 ... //send data
6 sock.close();
7 ServiceManager.kill(t);

Fig. 2.5: Application developers program against standardized libraries to initialize
services.
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that initializes in-network compression services (“WAN optimizers”) for reduced
bandwidth consumption and latency and, (iii) an Android OS WiFi management
interface that initializes in-network IDS for malware protection. In implementing
these, we aimed to answer two main questions. First, do the netcall abstractions
allow clients to express requests for a broad range of services? Second, are such
services useful to end applications? We believe our experience with these services
answers both in the affirmative.
DDoS Defense. We developed a webserver that initializes firewall services in re-
mote networks when overloaded. We extended an existing firewall implementation
to allow clients to add new rules with a CONFIG request. Our netcall client is an
Apache webserver that we modified to use netcalls. For this, we extend the exist-
ing mod qos [13] module in Apache, which detects overload and restricts access
to the webserver based on usage patterns, redirecting troubling hosts/prefixes to a
‘service overloaded’ webitializes. We augmented mod qos in 97 LOC to initialize
firewalling close to the offending hosts’ networks to prevent DDoS. Our integration
with mod qos demonstrates how application-layer context can beneficially inform
network behavior.

Ideally, we would test our application by deploying resolution servers and ser-
vices at every AS on the Internet; since we cannot do this in practice, we instead
leverage EC2 as follows. We install our modified webserver along with its local
firewall and resolution server in our local testbed. We then emulate the wide-area
Internet topology over EC2 by having each EC2 node serve as a ‘surrogate AS’,
installing software switches, firewalls and resolution servers at each. We then de-
ployed web clients to act as attackers on 20 EC2 nodes. Figure 2.6 shows a time
sequence of aggregate malicious traffic sent, malicious traffic at the switch in the
web server’s location, and malicious traffic reaching the webserver itself 3. At 25
seconds, the now-overloaded web server initializes the firewall. At time 45 seconds,
the web server initializes firewalls in remote networks. We see that neither the web-
server nor its local firewall is ever overloaded, as firewalls deeper in the network
drop malicious traffic before it reaches the web server’s site.
Traffic Compression. Enterprise networks today deploy WAN optimization ap-
pliances that compress traffic to minimize bandwidth costs. WAN optimization
requires that both the sending and receiving networks deploy appliances that com-
press/decompress traffic and hence, today, such compression is typically limited to

3Obviously the request rates shown are not enough to overload a web server: we artificially set
the bandwidth cap in mod qos to be very low to avoid flagging the attention of network adminis-
trators!
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Fig. 2.6: The webserver reacts to a DDoS attack by invoking network firewalls.

communication between the different sites of a single enterprise. With netcalls’
interdomain discovery capability, clients can instead initialize WAN optimization
services to any destination. We modified an existing command-line web client to
request compression whenever the user flags a particular request as a ‘large file’
download – e.g. downloading ISOs, video streams, etc. This change required
only 25 LOC. We investigated the benefits of invoking compression persistently
to commonly contacted destinations. Running a traffic trace we obtained from a
large enterprise[76] through our testbed, we found that, for this enterprise, enabling
WAN optimization to and from the ten most commonly contacted external ASes
reduced the enterprise’s total bandwidth utilization by 21%. Invoking compression
to and from 100% of external networks would reduce bandwidth by 27% – hence,
even partial deployment can provide substantial benefits for this service.
Android Security. Cell provider data networks protect smartphones by filtering
malicious traffic, but typical WiFi networks offer no such protection. We designed
a netcall-enabled IDS targeted towards Android smartphones, and modified the An-
droid WiFi interface to preferentially connect to networks that deployed this ser-
vice. Smartphones who invoke the service not only receive traditional firewalling
and IDS, but a set of Android-specific filters for real malware [5].

Upon connecting to a new WiFi network the smartphone attempts to enable se-
curity features. During this process, the security application maintains network con-
nectivity but bans all other applications from connecting to the network.To estab-
lish trust between the client and service, the service interface includes a validate
function, under which the service instance must present a certificate signed by a
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Fig. 2.7: An end host security suite on the Android device warns users when a
security service is unavailable.

trusted authority. We imagine trusted authorities to be either the client’s service
provider (e.g. T-Mobile, AT&T) or a dedicated security provider (e.g. Norton,
McAffee). If the security service is unavailable, the WiFi interface (shown in
Fig. 2.7) prompts the user asking whether to remain on 4G secure service from
their provider, connect to the insecure network and launch a local anti-virus, or try
to find another hotspot which does provide security features.

To test our security service with real malware, we create a sandboxed deploy-
ment with just our Android client, the Android IDS, a resolution server, and a sand-
box server that spoofs traffic from the Internet to the Android client and deny mal-
ware any access to the public Internet. For our Mobile IDS, we created 170 new
rules to detect 23 classes of malware; when running malware software within our
testbed, our rules caught 11 out of 11 malware attacks we deployed in our sand-
box. It is possible for the Android phone to perform filtering on its own, obviating
the need for any in network functionality at all; however, offloading this filtering
work to the network saves battery life. In our experiments with the Android de-
vice, continuous downloads while running a local antivirus drained the battery in
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5 hours and 45 minutes; with the antivirus disabled and offloaded to the network,
the battery life for the same workload lasted 8 hours 30 minutes – a 47% increase
in battery lifespan. Our modifications to the Android WiFi service to check service
availability, warn the user and startup antivirus included 124 LOC.

2.7 Evaluation

We now evaluate our netcalls design for request latency, control plane scalability,
service stability, and service availability.

2.7.1 Latency
Setup latency impacts how service designers can make use of INIT Requests - if the
setup latency is high relative to the duration of their intended use, they are unlikely
to invoke service processing.

To measure expected latency values, we used a Resolution Server deployment
on PlanetLab, having each of 138 PlanetLab nodes serve as surrogate servers for
33,508 ASNs. We assigned each AS a surrogate server with the following algo-
rithm: (1) we assigned the networks that hosted a PlanetLab node the node that
they hosted; (2) we assigned networks for which we had router IP addresses [9] the
node with the lowest RTT to their address space; (3) we assigned each remaining
network the node serving a majority of its peers. Complicating server assignment
is the fact that a single resolution server may surrogate for multiple networks; to
avoid co-located networks querying each other, we assigned each network a sec-
ondary server as well. We then had clients at each site query their local resolution
server with INIT requests of each type of placement pattern, such that none of the
requests resolved to the local network. We measured the end-to-end latency of each
request from the client. Fig. 3.8 shows the observed latencies for each type of query.

How long does it take to perform an INIT request across the wide area? In the
SINGLE case, the median query took 334 milliseconds, and the 90th percentile
took 906 milliseconds. These values are closely followed by the PERIM and PATH
cases, with median query times of 347 and 374 ms respectively. Overall, the wide
area latency (from Resolution Server to Resolution Server) dominates the setup
latency - end to end latency for a single request requires slightly more than 2 RTTs.

At what granularity can application developers invoke services without suffering
a serious performance penalty? A service setup time of 2-3 round-trip times is
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Fig. 2.8: Setup time (ms) to establish services.

negligible overhead for setting up persistent services (e.g. firewalls), services for
long-lived connections (e.g. acceleration for a large file transfer), or frequently
used services (e.g. invoking a proxy on web browser startup and then proxying
all requests to Google). However, for short-lived flows of only a few round trip
times, the setup penalty will noticeably impact performance; thus netcalls are not
appropriate for this use case.

2.7.2 Scalability
In this section, we consider the scalability of the netcalls API and whether or not it
is feasible for a network to handle INIT requests for a large number of clients. It is
impossible to evaluate what we expect to be ‘typical’ usage patterns before netcalls
are deployed; hence we focus here only on upper bounds for the number of INIT
requests per second and storage requirements for SRRs, the state kept at the network
mapping service service handle to the set of networks performing services for the
client. We derive our bounds from a network dataset from a very large enterprise of
over 100,000 hosts.
How large are the state requirements for a RISP’s resolution server(s)? As an
upper bound on state, we consider a model where every host initializes a service for
every connection it participates in. As mentioned in the previous section, we expect
typical service use to be much less frequent; none of the services we designed
depend on per-connection service initialization. In a trace from a week’s worth of
connections in the large enterprise, at an average point in time there were 108,430
active connections; this would lead to 36.2 MB of SRR state. The peak number
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Fig. 2.9: Fraction of AS paths over time experiencing service failure.

of active connections over the course of the week was 240,836; this would lead to
80.4MB of SRR state: a trivial amount of data to store for 100,000 clients.
How many requests per second must a RISP’s resolution server(s) be able to han-
dle? Looking at connection load, we once again look for an upper bound, assuming
that clients send an INIT request for every TCP session they start (even though
INIT requests in practice are likely to be much less frequent). Given an average of
108,430 active connections and an average TCP session length of 60 sec, the aver-
age rate of requests would be around 1,800 connections/sec. At peak hours, with
an average number of active connections at 270,836, the rate of requests would be
about 4,000 connections/sec.

This request load would be easily accommodated by a small number of servers
(<10), particularly in light of recent results on scaling connection processing [68,
53]. Nevertheless, ISPs can set policies for the number of requests they will accept
per client or the granularity at which they will allow INIT requests, hence, ISPs can
to some extent control the amount of state and requests they accept.

2.7.3 Stability
If traffic for a particular service is rerouted away from its service-performing AS
due to BGP updates, the client must re-initialize the service. To investigate how
often such a scenario occurs, we used routing update logs from the RouteViews [19]
project. We created an imaginary AS as a customer of ASes 7018 (AT&T), 3356
(Level 3), and 31500 (a small ISP) and constructed its routing table using default
shortest AS path preferences. Then, for each prefix, we selected an AS randomly
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and labeled it a ‘service-performing network’. Starting at Midnight, January 10,
2010, we monitored updates to the imaginary ASes routing table and monitored
when updates routed away from service-performing ASes.

How often does a path change remove a service performing path from the route
to a prefix? In Figure 2.9, we show the cumulative fraction of paths which have
experienced change over 24 hours. While 8% of paths experience change within
24 hours, only 5% of paths experience change that removes its service-performing
AS from the path. Within the first hour, less than half a percent of paths lose their
service AS. If the imaginary AS prefers paths that route through the service AS over
shortest paths only 3% of paths experience change that loses the service AS; even
if one service provider withdraws a path through the service-providing AS, another
provider’s path may still traverse the same AS.

What fraction of connections will experience service interruption mid-flow? Ser-
vice interruption only impacts the client if it occurs during a flow on a path in use.
Typical connections are short, and to popular prefixes (which studies have shown to
have relatively stable paths [71]). To capture the impact of path instability on con-
nections, we combined our BGP trace with a real enterprise trace, assuming that the
enterprise was a customer of our imaginary AS and that the traces occurred over the
same week long period. Over this period, the hosts in the enterprise contacted over
200 ASes, but we observed only one connection that would have been disrupted
by a BGP update. This leads to to believe that from the clients perspective, BGP
service interruptions will be negligible.

2.7.4 Availability
The netcalls architecture expands the reach of deployed services by allowing clients
to invoke interdomain services. We evaluated this benefit in simulation, using
an AS-level routing and topology simulator modeled after those used by other
groups [55, 63, 84]. Our simulator modeled the AS graph from January 20, 2010,
with 33,508 AS nodes and their peering relationships [8, 19]. For each simula-
tion, we randomly annotated a fraction of the ASes as ‘service-adopting’ ASes,
indicating that the AS supported the requested service; we biased this annotation
such that large ASes were twice as likely as the average AS to support the service.
We then randomly selected 10k random (Source, Destination) AS pairs and and
checked whether the forwarding path(s)4 between them contained ‘service’ ASes

4If the source AS was multihomed, we checked all its paths.
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Fig. 2.10: Fraction of AS pairs able to access service on path between them for
various INIT requests.
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Fig. 2.11: Fraction of AS pairs able to access service on path between them with
and without extensions.

appropriate to fulfill a service request under a number of constraints.

How often is a service available between a random pair of ASes? In Figure 2.10,
we show the fraction of AS pairs where the networks on the default path between
them support the service: the y-axis shows the fraction of AS pairs with a path that
provides access to the service, and the x-axis shows the fraction of ASes deploying
the desired service interface. About 70% of AS pairs have at least one service-
performing AS on a path between them, even when only 10% of networks adopt the
service: a 7× improvement in service availability from extending service invocation
across interdomain boundaries. As could be expected, service availability drops for
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more demanding service types. However, all service types except for ‘Hop by Hop’
services (at every AS along the path) are available for almost 100% of AS pairs
once the service is deployed in only 50% of networks.

When the requesting AS can only invoke services with its service peers, how often
is a service available? Because we expect networks to only invoke services with
peers, just because a service is deployed doesn’t mean that a network will be able to
invoke the service (and hence Fig. 2.10 is an overestimate). In Figure 2.11, we show
how often a service is available once along the forwarding path between source and
destination, at an AS which the source AS peers with. When the requesting AS can
only invoke services with its physical (Direct) peers, service availability is roughly
35% when 10% of ASes deploy the service. When we assigned each requesting
AS 5 additional ‘service peers’ (selected from Tier-1 ISPs), availability improved
such that about 45% of pairs could invoke the service at 10% deployment. Hence,
the ability to invoke interdomain services improves service availability even when
the requesting network can only invoke services in a restricted number of external
networks.

How do the multipath and brokering extensions proposed in §2.4.4 improve avail-
ability? Returning to Figure 2.11: our proposed extensions dramatically increase
availability. With both extensions in use at 10% deployment, almost 90% of AS
pairs had access to the service, providing almost universal availability with only
very limited service deployment.

2.8 Related Work

Having sketched netcalls’ goals and approach, we briefly contrast our work with
related efforts.
Network services. Research has pursued the general vision for in-network services
for decades now with several pioneering proposals for specific new services [65,
44, 41]. We focus on the design of a general API rather than a specific service. In
this sense, we view our efforts as complementary to this prior work.

Perhaps closer to our goals, is prior work on architectural support for network
services more generally [83, 69, 33]. These prior efforts were rooted in the assump-
tion that supporting rich in-network processing required a fundamentally different
architecture and hence designed solutions to replace the IP service model. In con-
trast, our design efforts lead us to believe that our goals can be well achieved by
augmenting the existing service model and see no need to replace IP. A further
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distinction relative to Active Networks is our more constrained model of network
services wherein operators pre-install advanced functionality and expose to clients
the ability to invoke (but not define!) these functions.
Middlebox services today. Some ISPs already expose services to immediate cus-
tomers [38]; the IETF MidCom group [77] explores standards for communication
with local middleboxes. Our proposal complements these, targeting clients at scale
across network domains in a general manner. Traffic processing is also available
through overlay or cloud services [1, 6].
Middlebox-centric network architectures. Seminal proposals on integrating mid-
dleboxes into the broader architecture focused on the naming implications of mid-
dleboxes, proposing that clients explicitly address the specific middleboxes for their
traffic to traverse [82, 36, 78]. These proposals resolve the tension of applying un-
solicited functionality to clients’ traffic. But, they leave unresolved how clients
discover these middleboxes, how clients reason about which middleboxes to select
given routing and topology conditions and the role of network providers and their
policies in offering and managing middlebox-based services. netcalls tackles the
above unresolved questions and, in so doing, proposes a different approach. To
reduce complexity for end clients and provide network operators with a stake in
service selection, we argue that the appropriate abstraction is instead to have clients
name the functionality itself and leave the network to resolve how and where it is
performed.

Typed Networking [67], recognizing that hosts may want to avoid certain pro-
cessing, envisions a ‘negotiation’ between middleboxes and hosts where boxes on
the forwarding path signal the client, that can then opt out of processing. They do
not consider an opt-in capability and hence issues of service discovery and avail-
ability.
Network evolution. Recent efforts [66] define open APIs between switches and
operators within a single domain; they do not discuss the APIs a network exposes
externally–to end clients and to other networks. Our work likewise complements
recent research on programmable routers [46, 52, 64] by showing how the capabil-
ities they enable can be exposed to clients.
Service Discovery is a common component of many systems. Most of these how-
ever operate in contexts, with goals or technology different from ours; e.g. targeting
ISP-assisted application-layer service composition [70], wide-area discovery using
IP multicast [30], using new naming infrastructures [81], etc.
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2.9 Conclusion

We presented netcalls, an API by which client applications invoke advanced pro-
cessing functions from the network. We presented three end host applications that
invoke netcalls to defend against DDoS, compress high-bandwidth connections, and
secure against malware.

We do not by any means expect that netcalls is the final say in discussion of
how to best integrate advanced network processing into the network architecture.
However, we believe our contribution - a vision for high-level, programmable in-
terfaces that provide access to federated services across the entire Internet - moves
the space forward towards a practical design that is easy to use from the perspective
of application developers, while providing network providers a stake in selection,
deployment, and profit from advanced services.
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3 APLOMB: Enterprise Middlebox Services in the
Cloud

3.1 Introduction

Today’s enterprise networks rely on a wide spectrum of specialized appliances or
middleboxes. Trends such as the proliferation of smartphones and wireless video
are set to further expand the range of middlebox applications [25]. Middleboxes of-
fer valuable benefits, such as improved security (e.g., firewalls and intrusion detec-
tion systems), improved performance (e.g., proxies) and reduced bandwidth costs
(e.g., WAN optimizers). However, as we show in §3.2, middleboxes come with high
infrastructure and management costs, which result from their complex and special-
ized processing, variations in management tools across devices and vendors, and
the need to consider policy interactions between these appliance and other network
infrastructure.

The above shortcomings mirror the concerns that motivated enterprises to tran-
sition their in-house IT infrastructures to managed cloud services. Inspired by this
trend, we ask whether the promised benefits of cloud computing—reduced expen-
diture for infrastructure, personnel and management, pay-by-use, the flexibility to
try new services without sunk costs, etc.—can be brought to middlebox infrastruc-
ture. Beyond improving the status quo, cloud-based middlebox services would also
make the security and performance benefits of middleboxes available to users such
as small businesses and home and mobile users who cannot otherwise afford the
associated costs and complexity.

In this chapter, we discuss APLOMB, an architecture that enables outsourcing
the processing of their traffic to third-party middlebox service providers running
in the cloud. APLOMB is a less drastic change to the middlebox status quo than
netcalls, yet it still represents a significant change to enterprise networks. We val-
idate that this exercise is worthwhile by examining what kind of a burden middle-
boxes impose on enterprises. The research literature, however, offers surprisingly
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few real-world studies; the closest study presents anecdotal evidence from a single
large enterprise [75]. We thus start with a study of 57 enterprise networks, aimed
at understanding (1) the nature of real-world middlebox deployments (e.g., types
and numbers of middleboxes), (2) “pain points” for network administrators, and (3)
failure modes. Our study reveals that middleboxes do impose significant infrastruc-
ture and management overhead across a spectrum of enterprise networks and that
the typical number of middleboxes in an enterprise is comparable to its traditional
L2/L3 infrastructure!

Our study establishes the costs associated with middlebox deployments and the
potential benefits of outsourcing them. We then examine different options for ar-
chitecting cloud-based middlebox services. To be viable, such an architecture must
meet three challenges:
(1) Functional equivalence. A cloud-based middlebox must offer functionality and
semantics equivalent to that of an on-site middlebox – i.e., a firewall must drop
packets correctly, an intrusion detection system (IDS) must trigger identical alarms,
etc. In contrast to traditional endpoint applications, this is challenging because mid-
dlebox functionality may be topology dependent. For example, traffic compression
must be implemented before traffic leaves the enterprise access link, and an IDS
that requires stateful processing must see all packets in both directions of a flow.
Today, these requirements are met by deliberately placing middleboxes ‘on path’
at network choke points within the enterprise – options that are not readily avail-
able in a cloud-based architecture. As we shall see, these topological constraints
complicate our ability to outsource middlebox processing.
(2) Low complexity at the enterprise. As we shall see, an outsourced middlebox ar-
chitecture still requires some supporting functionality at the enterprise. We aim
for a cloud-based middlebox architecture that minimizes the complexity of this
enterprise-side functionality: failing to do so would detract from our motivation
for outsourcing in the first place.
(3) Low performance overhead. Middleboxes today are located on the direct path
between two communicating endpoints. Under our proposed architecture, traffic is
instead sent on a detour through the cloud leading to a potential increase in packet
latency and bandwidth consumption. We aim for system designs that minimize this
performance penalty.

We explore points in a design space defined by three dimensions: the redirec-
tion options available to enterprises, the footprint of the cloud provider, and the
complexity of the outsourcing mechanism. We find that all options have natural
tradeoffs across the above requirements and settle on a design that we argue is the
sweet spot in this design space, which we term APLOMB, the Appliance for Out-
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sourcing Middleboxes. We implement APLOMB and evaluate our system on EC2
using real end-user traffic and an analysis of traffic traces from a large enterprise
network. In our enterprise evaluation, APLOMB imposes an average latency in-
crease of only 1 ms and a median bandwidth inflation of 3.8%.

To summarize, our key contributions are:
• A study of costs and concerns in 57 real-world middlebox deployments, across

a range of enterprise scenarios.
• A systematic exploration of the requirements and design space for outsourcing

middleboxes.
• The design, implementation, and evaluation of the

APLOMB architecture.
• A case study of how our system would impact the middlebox deployment of a

large enterprise.
A core question in network design is where network functionality should be

embedded. A wealth of research has explored this question for various network
functionality, such as endpoints vs. routers for congestion control [29, 58, 48] and
on-path routers vs. off-path controllers for routing control plane functions [47, 66].
Our work follows in this vein: the functionality we focus on is advanced traffic pro-
cessing (an increasingly important piece of the network data plane) and we weigh
the relative benefits of embedding such processing in the cloud vs. on-path middle-
boxes, under the conjecture that the advent of cloud computing offers new, perhaps
better, options for supporting middlebox functionality.
Roadmap: We present our study of enterprise middlebox deployments in §3.2.
In §3.3 we explore the design space for outsourcing middleboxes; we present the
design and evaluation of the APLOMB architecture in §3.4 and §3.5 respectively.
We discuss outstanding issues in §3.6 and related work in §3.7 before concluding in
§3.8.

3.2 Middleboxes Today

Before discussing outsourcing designs, we draw on two datasets to discuss typical
middlebox deployments in enterprise networks and why their challenges might be
solved by the cloud. We conducted a survey of 57 enterprise network administra-
tors, including the number of middleboxes deployed, personnel dedicated to them,
and challenges faced in administering them. To the best of our knowledge, this is
the first large-scale survey of middlebox deployments in the research community.
Our dataset includes 19 small (fewer than 1k hosts) networks, 18 medium (1k-10k
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Fig. 3.2: Administrator-estimated spending on middlebox hardware per network.

hosts) networks, 11 large (10k-100k hosts) networks, and 7 very large (more than
100k hosts) networks.

We augment our analysis with measurements from a large enterprise with ap-
proximately 600 middleboxes and tens of international sites; we elaborate on this
dataset in §3.5.3.

Our analysis highlights several key challenges that enterprise administrators
face with middlebox deployments: large deployments with high capital expenses
and operating costs (§3.2.1), complex management requirements (§3.2.2), and the
need for overprovisioning to react to failure and overload scenarios (§3.2.3). We ar-
gue these factors parallel common arguments for cloud computation, and thus make
middleboxes good candidates for the cloud.
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3.2.1 Middlebox Deployments
Our data illustrates that typical enterprise networks are a complex ecosystem of
firewalls, IDSes, web proxies, and other devices. Figure 3.1 shows a box plot of
the number of middleboxes deployed in networks of all sizes, as well as the num-
ber of routers and switches for comparison. Across all network sizes, the number
of middleboxes is on par with the number of routers in a network! The average
very large network in our data set hosts 2850 L3 routers, and 1946 total middle-
boxes; the average small network in our data set hosts 7.3 L3 routers and 10.2 total
middleboxes.1

These deployments are not only large, but are also costly, requiring high up-
front investment in hardware: thousands to millions of dollars in physical equip-
ment. Figure 3.2 displays five year expenditures on middlebox hardware against
the number of actively deployed middleboxes in the network. All of our surveyed
very large networks had spent over a million dollars on middlebox hardware in the
last five years; the median small network spent between $5,000-50,000 dollars, and
the top third of the small networks spent over $50,000.

Paralleling arguments for cloud computing, outsourcing middlebox processing
can reduce hardware costs: outsourcing eliminates most of the infrastructure at the
enterprise, and a cloud provider can provide the same resources at lower cost due
to economies of scale.

1Even 7.3 routers and 10.2 middleboxes represents a network of a substantial size. Our data was
primarily surveyed from the NANOG network operators group, and thus does not include many of
the very smallest networks (e.g. homes and very small businesses with only tens of hosts).
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3.2.2 Complexity in Management
Figure 3.1 also shows that middleboxes deployments are diverse. Of the eight mid-
dlebox categories we present in Figure 3.1, the median very large network deployed
seven categories of middleboxes, and the median small network deployed middle-
boxes from four. Our categories are coarse-grained (e.g. Application Gateways
include smartphone proxies and VoIP gateways), so these figures represent a lower
bound on the number of distinct device types in the network.

Managing many heterogeneous devices requires broad expertise and conse-
quently a large management team. Figure 3.3 correlates the number of middleboxes
against the number of networking personnel. Even small networks with only tens of
middleboxes typically required a management team of 6-25 personnel. Thus, mid-
dlebox deployments incur substantial operational expenses in addition to hardware
costs.

Understanding the administrative tasks involved further illuminates why large
administrative staffs are needed. We break down the management tasks related to
middleboxes below.
Upgrades and Vendor Interaction. Deploying new features in the network en-
tails deploying new hardware infrastructure. From our survey, network operators
upgrade in the median case every four years. Each time they negotiate a new de-
ployment, they must select between several offerings, weighing the capabilities of
devices offered by numerous vendors – an average network in our dataset contracted
with 4.9 vendors. This four-year cycle is at the same time both too frequent and too
infrequent. Upgrades are too frequent in that every four years, administrators must
evaluate, select, purchase, install, and train to maintain new appliances. Upgrades
are too infrequent in that administrators are ‘locked in’ to hardware upgrades to
obtain new features. Quoting one administrator:

Upgradability is very important to me. I do not like it when vendors
force me to buy new equipment when a software upgrade could give
me additional features.

Cloud computing eliminates the upgrade problem: enterprises sign up for a mid-
dlebox service; how the cloud provider chooses to upgrade hardware is orthogonal
to the service offered.
Monitoring and Diagnostics. To make managing tens or hundreds of devices fea-
sible, enterprises deploy network management tools (e.g., [22, 14]) to aggregate
exported monitoring data, e.g. SNMP. However, with a cloud solution, the cloud
provider monitors utilization and failures of specific devices, and only exposes a

40



Misconfig. Overload Physical/Electric
Firewalls 67.3% 16.3% 16.3%
Proxies 63.2% 15.7% 21.1%
IDS 54.5% 11.4% 34%

Table 3.1: Fraction of network administrators who estimated misconfiguration,
overload, or physical/electrical failure as the most common cause of middlebox
failure.

middlebox service to the enterprise administrators, simplifying management at the
enterprise.
Configuration. Configuring middleboxes requires two tasks. Appliance configu-
ration includes, for example, allocating IP addresses, installing upgrades, and con-
figuring caches. Policy configuration is customizing the device to enforce specific
enterprise-wide policy goals (e.g. a HTTP application filter may block social net-
work sites). Cloud-based deployments obviate the need for enterprise administra-
tors to focus on the low-level mechanisms for appliance configuration and focus
only on policy configuration.
Training. New appliances require new training for administrators to manage them.
One administrator even stated that existing training and expertise was a key question
in purchasing decisions:

Do we have the expertise necessary to use the product, or would we
have to invest significant resources to use it?

Another administrator reports that a lack of training limits the benefits from use of
middleboxes:

They [middleboxes] could provide more benefit if there was better man-
agement, and allocation of training and lab resources for network de-
vices.

Outsourcing diminishes the training problem by offloading many administrative
tasks to the cloud provider, reducing the set of tasks an administrator must be able
perform. In summary, for each management task, outsourcing eliminates or greatly
simplifies management complexity.
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load balancers in the very large enterprise dataset.

3.2.3 Overload and Failures
Most administrators who described their role as engineering estimated spending
between one and five hours per week dealing with middlebox failures; 9% spent
between six and ten hours per week. Table 3.1 shows the fraction of network ad-
ministrators who labeled misconfiguration, overload, and physical/electrical fail-
ures as the most common cause of failures in their deployments of three types of
middleboxes. Note that this table is not the fraction of failures caused by these
issues; it is the fraction of administrators who estimate each issue to be the most
common cause of failure. A majority of administrators stated misconfiguration as
the most common cause of failure; in the previous subsection we highlight manage-
ment complexity which likely contributes to this figure.

On the other hand, many administrators saw overload and physical/electrical
problems as the most common causes of errors. For example, roughly 16% of
administrators said that overload was the most common cause of IDS and proxy
failure, and 20% said that physical failures were the most common cause for prox-
ies. A cloud-based capability to elastically provision resources avoids overload by
enabling on-demand scaling and resolves failure with standby devices – without the
need for expensive overprovisioning.
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3.2.4 Discussion
To recap, our survey across 57 enterprises illuminates several middlebox-specific
challenges that cloud outsourcing can solve: large deployments with high capital
and operating expenses, complex management requirements inflating operation ex-
penses, and failures from physical infrastructure and overload. Cloud outsourcing
can cut costs by leveraging economies of scale, simplify management for enterprise
administrators, and can provide elastic scaling to limit failures.

Outsourcing to the cloud not only solves challenges in existing deployments,
but also presents new opportunities. For example, resource elasticity not only al-
lows usage to scale up, but also to scale down. Figure 3.4 shows the distribution of
average-to-max utilization (in terms of active connections) for three devices across
one large enterprise. We see that most devices operate at moderate to low uti-
lization; e.g., 20% of Load Balancers run at <5% utilization. Today, however,
enterprises must invest resources for peak utilization. With a cloud solution, an en-
terprise can lease a large load balancer only at peak hours and a smaller, cheaper
instance otherwise. Furthermore, a pay-per-use model democratizes access to mid-
dlebox services and enables even small networks who cannot afford up-front costs
to benefit from middlebox processing.

These arguments parallel familiar arguments for the move to cloud computa-
tion [34]. This parallel, we believe, only bolsters the case.

3.3 Design Space

Having established the potential benefits of outsourcing middleboxes to the cloud,
we now consider how such outsourcing might be achieved. To start, any solution
will require some supporting functionality deployed at the enterprise: at a mini-
mum, we will require some device to redirect the enterprise’s traffic to the cloud.
Hence, we assume that each enterprise deploys a generic appliance which we call
an Appliance for Outsourcing Middleboxes or APLOMB. However, depending on
the complexity of the design, the functionality might be integrated with the egress
router. We assume that the APLOMB redirects traffic to a Point of Presence (PoP),
a datacenter hosting middleboxes which process the enterprise’s traffic.

As a baseline, we reflect on the properties of middleboxes as deployed today
within the enterprise. Consider a middlebox m that serves traffic between endpoints
a and b. Our proposal is to change the placement of m – moving m from the
enterprise to the cloud. Moving m to the cloud eliminates three key properties of
its current placement:
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(1) on-path: m lies on the direct IP path between a and b
(2) choke point: all paths between a and b traverse m
(3) local: m is located inside the enterprise.

The challenges we face in outsourcing middleboxes all derive from losing the
above properties, and our design focuses on compensating for this loss. More
specifically, in attempting to regain the benefits of the above properties, we arrive
at three design components, as described below.

Redirection: Being on-path makes it trivially easy for a middlebox to obtain
the traffic it must process; being at a choke point ensures the middlebox sees both
directions of traffic flow between two endpoints (bidirectional visibility is critical
since most middleboxes operate at the session level). A middlebox in the cloud
loses this natural ability; hence we need a redirection architecture that routes traffic
between a and b via the cloud, with both directions of traffic consistently traversing
the same cloud PoP.

Latency Strategy: A second consequence of being on-path is that the mid-
dlebox introduces no additional latency into the path. In contrast, sending traffic
on a detour through the cloud could increase path latency, necessitating a practical
strategy for low latency operation.

Further, certain ‘extremely local’ middleboxes such as proxies and WAN opti-
mizers rely on being local to obtain significant reductions in latency and bandwidth
costs. Caching proxies effectively terminate communication from an enterprise
host a to an external host b thus reducing communication latency from that of path
a-m-b to that of a-m. Likewise, WAN optimizers include a protocol acceleration
component that achieves significant latency savings (although using very different
mechanisms from a proxy).Thus, the latency optimizations we develop also must
serve to minimize the latency increase due to taking extremely local middleboxes
out of the enterprise.

APLOMB +: ‘Extremely local’ middleboxes not only reduce latency, but also
reduce bandwidth consumption. Caching proxies, by serving content from a local
store, avoid fetching data from the wide area; WAN Optimizers include a redun-
dancy elimination component. To retain the savings in bandwidth consumption, we
propose what we term APLOMB + appliances that extend APLOMB to provide
comparable bandwidth reduction to extremely local appliances.

We explore solutions for the above design components in §3.3.1 (redirection),
§3.3.2 (low latency) and §3.3.3 (APLOMB+). Recall from §3.1 that our design
goals are to ensure: (i) functional equivalence, (ii) low performance overhead, and
(iii) low enterprise-side complexity. We analyze our design options through the lens
of these goals and recap the solution we arrive at in §3.3.4.
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Fig. 3.5: Comparing two redirection architectures.

3.3.1 Redirection
We consider three natural approaches to redirection and discuss their latency vs.
complexity tradeoffs.

Bounce Redirection

In the simplest case, the APLOMB gateway at the enterprise tunnels both ingress
and egress traffic to the cloud, as shown in Figure 3.5(a). Incoming traffic is
bounced to the cloud PoP (1), processed by middleboxes, then sent back to the
enterprise (2,3) and delivered to the appropriate hosts. Outgoing traffic is similarly
redirected (4-6).

This scheme has two advantages. First, the APLOMB gateway is the only de-
vice that needs to be cloud-aware; no modification is required to existing enterprise
network or application infrastructure. Second, the design requires minimal gateway
functionality and configuration—a few static rules to redirect traffic to the PoP. The
obvious drawback of this architecture is the increase in end-to-end latency due to
an extra round trip to the cloud PoP for each packet.2

2We could eliminate a hop for outgoing traffic by routing return traffic directly from the cloud
to the external target. However, this would require the cloud provider to spoof the enterprise’s IP
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Fig. 3.6: A pure-IP solution cannot ensure that inbound and outbound traffic tra-
verse the same PoP, breaking bidirectional middlebox services.

IP-based Redirection

To avoid the extra round-trips in bounce redirection, we might instead route traffic
directly to/from the cloud as in Figure 3.5(b). One approach is to redirect traffic
at the IP level: for example, the cloud provider could announce IP prefix P on the
enterprise’s behalf. Hosts communicating with the enterprise direct their traffic to
P and thus their enterprise-bound traffic is received by the provider. The cloud
provider, after processing the traffic, then tunnels the traffic to the enterprise gate-
ways, who announce an additional prefix P ′. 3

In practice, enterprises would like to leverage the multi-PoP footprint of a provider
for improved latency, load distribution and fault tolerance. For this, the cloud
provider might advertise P from multiple PoPs so that client traffic is effectively
‘anycasted’ to the closest PoP. Unfortunately, IP-based redirection breaks down in
a multi-PoP scenario since we cannot ensure that traffic from a client a to enterprise
b will be routed to the same cloud PoP as that from b to a, thus breaking stateful
middleboxes. This is shown in Figure 3.6 where the Cloud-West PoP is closest (in
terms of BGP hops) to the enterprise while Cloud-East is closest to the external site.
Likewise, if the underlying BGP paths change during a session then different PoPs
might be traversed, once again disrupting stateful processing. Finally, because traf-
fic is redirected at the network layer based on BGP path selection criteria (e.g., AS
hops), the enterprise or the cloud provider has little control over which PoP is se-
lected and cannot (for example) pick PoPs to optimize end-to-end latency. Because
of these limitations, we reject IP-based redirection as an option.

addresses, and such messages may be filtered by intermediate ISPs.
3The prefix P would in fact have to be owned by the cloud provider. If the cloud provider simply

advertises a prefix assigned to the enterprise, then ISPs might filter the BGP announcements as they
would fail the origin authorization checks.
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DNS-based Redirection

DNS-based redirection avoids the problems of IP-based redirection. Here the cloud
provider runs the DNS resolution on the enterprise’s behalf [3]. We explain this
using the example in Figure 3.7. After an enterprise client provides its cloud
provider with a manifest of their externally accessible services, the provider reg-
isters DNS names on behalf of the client’s external services (step 1); e.g., the
provider registers ‘MyEnterprise.com’. When a user performs a DNS lookup
on MyEnterprise.com (step 2), the DNS record directs it to the cloud PoP. The
user then directs his traffic to the cloud PoP (step 3), where the traffic undergoes
NAT to translate from the public IP address mapped to the cloud PoP to a private
IP address internal to the enterprise client’s network. The traffic is then processed
by any relevant middleboxes and tunneled (step 4) to the enterprise.

This scheme addresses the bidirectionality concerns even in a multi-PoP setting
as the intermediate PoP remains the same even if the network-level routing changes.
Outbound traffic from the enterprise is relatively easy to control; the gateway device
looks up a redirection map to find the PoP to which it must send return traffic. This
ensures the symmetric traversal of middleboxes. Finally, Internet traffic initiated by
enterprise hosts undergo NAT at the cloud provider. Thus, return traffic is forced to
traverse the same PoP based on the public IP the provider assigned this connection.4

Redirection Tradeoffs

To compare the latency inflation from bounce redirection vs. DNS-based redirec-
tion, we use measurements from over 300 PlanetLab nodes and twenty Amazon

4Many enterprises already use NATs to external services for other reasons (e.g., flexibility and
security); we introduce no new constraints.
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Fig. 3.8: Round Trip Time (RTT) inflation when redirecting traffic between US
PlanetLab nodes through Amazon PoPs.

CloudFront locations. We consider an enterprise “site” located at one of fifty US-
based PlanetLab sites while the other PlanetLab nodes emulate “clients”. For each
site e, we pick the closest Amazon CloudFront PoP P ∗e = argminP Latency(P, e)
and measure the impact of tunneling traffic to/from this PoP.

Figure 3.8 shows that the simplest bounce redirection can increase the end-to-
end RTT by more than 50ms for 20% of inter-PlanetLab paths. The basic DNS-
based redirection reduces the 80th percentile of latency inflation 2× compared to
bounce redirection. In fact, for more than 30% of the pairwise measurements, the la-
tency is actually lower than the direct IP path. This is because of well-known trian-
gle inequality violations in inter-domain routing and the fact that cloud providers are
very well connected to tier-1/2 ISPs [50]. Hence because the additional enterprise-
side complexity required for DNS-based redirection is minimal and yet it achieves
significantly lower latencies than Bounce redirection, we choose the DNS-based
design.

3.3.2 Low Latency Operation
We now consider additional latency-sensitive PoP selection algorithms and analyze
the scale of deployment a cloud provider requires to achieve low latency operation.
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Smarter Redirection

So far, we considered a simple PoP selection algorithm where an enterprise site e
picks its closest PoP. Figure 3.8 shows that with this simple redirection, 10% of
end-to-end scenarios still suffer more than 50ms inflation. To reduce this latency
further, we will try to utilize multiple PoPs from the cloud provider’s footprint to
optimize the end-to-end latency as opposed to just the enterprise-to-cloud latency.
That is, instead of using a single fixed PoP P ∗e for each enterprise site e, we choose
the optimal PoP for each c, e combination. Formally, for each client c and enterprise
site e, we identify:

P ∗c,e : argmin
P

Latency(P, c) + Latency(P, e)

We quantify the inflation using smart redirection and the same experimental
setup as before, with Amazon CloudFront sites as potential PoPs and PlanetLab
nodes as enterprise sites. Figure 3.8 shows that with this “Smart Redirection”, more
than 70% of the cases have zero or negative inflation and 90% of all traffic has less
than 10ms inflation.

Smart redirection requires that the APLOMB appliance direct traffic to differ-
ent PoPs based on the client’s IP and maintain persistent tunnels to multiple PoPs
instead of just one tunnel to its closest PoP. This requirement is modest: mappings
for PoP selection can be computed at the cloud provider and pushed to APLOMB
appliances, and today’s commodity gateways can already support hundreds of per-
sistent tunneled connections.

Finally, we note that if communication includes extremely local appliances such
as proxies and WAN optimizers, then the bulk of communication is between the
enterprise and the middlebox and hence the optimal strategy (which we follow) for
such cases is still to simply pick the closest PoP.

Provider Footprint

We now analyze how the middlebox provider’s choice of geographic footprint may
impact latency. Today’s clouds have a few tens of global PoPs and expand as new
demand arises [4]. For greater coverage, we could envision an extreme point with
a middlebox provider with a footprint comparable to CDNs such as Akamai with
thousands of vantage points [80]. While it is clear that a larger footprint provides
lower latency, what is not obvious is how large a footprint is required in the context
of outsourcing middleboxes.
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Fig. 3.9: PlanetLab-to-PlanetLab RTTs with APLOMB redirection through Ama-
zon and Akamai.

To understand the implications of the provider’s footprint, we extend our mea-
surements to consider a cloud provider with an Akamai-like footprint using IP
addresses of over 20,000 Akamai hosts [43]. First, we repeat the the end-to-end
latency analysis for paths between US PlanetLab nodes and see that a larger, edge-
concentrated Akamai footprint reduces tail latency, but the overall changes are
marginal compared to a smaller but well connected Amazon-like footprint. End-
to-end latency is the metric of interest when outsourcing most middleboxes – all
except for ‘extremely local’ appliances. Because roughly 70% of inter-PlanetLab
node paths actually experience improved latency, these results suggest that a mid-
dlebox provider can service most customers with most types of middleboxes (e.g.,
NIDS, firewalls) with an Amazon-like footprint of a few tens of PoPs.

To evaluate whether we can outsource even extremely local middleboxes with-
out a high latency penalty (we discuss bandwidth penalties in §3.3.3), we look at
the RTT between each Planetlab node and its closest Akamai node in Figure 3.10.
In this case, we see a more dramatic impact of Akamai’s footprint as it provides
sub-millisecond latencies to 20% of sites, and less than 5 ms latencies to almost
90% of sites. An Amazon-like footprint provides only 30% of sites with an RTT
<5 ms. Hence our results suggest that an Amazon-like footprint can serve latency
acceleration benefits in only a limited portion of the US; to serve a nation-wide set
of sites, an Akamai-like footprint is necessary.
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Fig. 3.10: Direct RTTs from PlanetLab to nearest Akamai or Amazon redirection
node.

3.3.3 APLOMB+ Gateways
As mentioned earlier, extremely local appliances optimize both latency and band-
width consumption. Our results above suggest that, with an appropriate provider
footprint, these appliances can be outsourced and still offer significant latency sav-
ings. We now consider the question of the bandwidth savings they enable. Unfortu-
nately, this is a harder problem since bandwidth optimizations must fundamentally
be implemented before the enterprise access link in order to be useful. We thus see
three options, described below.

The first is to simply not outsource these appliances. From the enterprises we
surveyed and Figure 3.1, we see that WAN optimizers and proxies are currently
only deployed in large enterprises and that APLOMB is of significant value even if
it doesn’t cover proxies and WAN optimizers. Nevertheless, we’d like to do better
and hence ask whether a full-fledged middlebox is really needed or whether we
could achieve much of their benefit with a more minimal design.

Thus the second option we consider is to embed some general-purpose traf-
fic compression capabilities into the APLOMB appliance—we term such an aug-
mented appliance an APLOMB+. In §3.5.3, we evaluate APLOMB+ against tradi-
tional WAN optimizers using measurements from a large enterprise and show that
protocol-agnostic compression [31] can provide similar bandwidth savings (Fig-
ure 3.18). While our measurements suggest that in the specific case of WAN op-
timization a minimalist APLOMB+ suffices, we do not claim that such a minimal
capability exists for every conceivable middlebox (e.g., consider an appliance that
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encodes outgoing traffic for loss protection), nor that APLOMB+ can fully replicate
the behavior of dedicated appliances.

Our third option considers more general support for extremely local appliances
at the APLOMB gateway. For this, we envision a more “active” appliance architec-
ture that can run specialized software modules (e.g., a FEC encoder). A minimal
set of such modules can be dynamically installed either by the cloud provider or
the enterprise administrator. Although more general, this option increases both de-
vice and configuration complexity for the enterprise. For this reason, and because
APLOMB+ suffices to outsource the extremely local appliances we find in today’s
networks, we choose to implement APLOMB+ in our design.

Type of Middlebox Enterprise Device Cloud Footprint
IP Firewalls Basic APLOMB Multi-PoP

Application Firewalls Basic APLOMB Multi-PoP
VPN Gateways Basic APLOMB Multi-PoP
Load Balancers Basic APLOMB Multi-PoP

IDS/IPS Basic APLOMB Multi-PoP
WAN optimizers APLOMB+ CDN

Proxies APLOMB+ CDN

Table 3.2: Complexity of design and cloud footprint required to outsource different
types of middleboxes.

3.3.4 Summary
We briefly recap our design and its performance and complexity tradeoffs. At the
enterprise end, the functionality we require is embedded in an APLOMB appliance.
The basic APLOMB tunnels traffic to multiple cloud PoPs and stores a redirection
map based on which it forwards traffic to the cloud. The cloud provider uses DNS
redirection to redirect traffic from the enterprise’s external contacts to a cloud PoP
before forwarding it to the enterprise. APLOMB+ augments this basic functionality
with general compression for bandwidth savings.

In addition to middlebox processing, a cloud-based middlebox provider must
support DNS translation for its customers, NAT, and tunneling. The key design
choice to a provider is the scale of its deployment footprint. We saw that an
Amazon-like footprint often decreases latency relative to the direct IP path. How-
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ever, for performance optimization devices, we saw that a larger Akamai-like foot-
print is necessary to provide extremely local services with nation-wide availability.

Today APLOMB, Multi-PoP
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Fig. 3.11: Average number of middleboxes remaining in enterprise under different
outsourcing options.

Table 3.2 identifies the design option (and hence its associated complexity) that
is needed to retain the functional equivalence of the different middleboxes observed
in our survey, e.g., outsourcing an IP firewall requires only a basic APLOMB at the
enterprise and an Amazon-scale footprint.5

Based on this analysis, Figure 3.11 shows the number of middleboxes that re-
main in an average small, medium, and large enterprise under different outsourcing
deployment options. This suggests that small and medium enterprises can achieve
almost all outsourcing benefits with a basic APLOMB architecture using today’s
cloud providers (we discuss the remaining middleboxes, ‘internal firewalls’, in
§3.5.3). The same basic architecture can outsource close to 50% of the appliances
in very large enterprise networks; using APLOMB+ increases the percentage of
outsourced appliances to close to 90%.

3.4 APLOMB: Detailed Design

In describing the detailed design of the APLOMB architecture, we focus on three
key components as shown in Figure 3.12: (1) a APLOMB gateway to redirect enter-
prise traffic, (2) the corresponding functions and middlebox capabilities at the cloud

5We note that even load balancers can be outsourced since APLOMB retains stateful semantics.
One subtle issue is whether load balancers really need to be physically close to backend servers;
e.g., for identifying load imbalances at the sub-millisecond granularity. Our conversations with
administrators suggest that this is not a typical requirement.
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provider, and (3) a control plane which is responsible for managing and configuring
these components.

3.4.1 Enterprise Configuration
Redirecting traffic from the enterprise client to the cloud middlebox provider is
simple: an APLOMB gateway is co-located with the enterprise’s gateway router,
and enterprise administrators supply the cloud provider with a manifest of their
address allocations. APLOMB changes neither routing nor switching, and end hosts
require no new configuration.

Registration

APLOMB involves an initial registration step in which administrators provide the
cloud provider with an address manifest. These manifests list the enterprise net-
work’s address blocks in its private address space and associates each address or
prefix with one of three types of address records:

Protected services: Most private IP addresses are registered as protected ser-
vices. These address records contain an IP address or prefix and the public IP
address of the APLOMB device at the gateway to the registered address(es). This
registration allows inter-site enterprise traffic to traverse the cloud infrastructure
(e.g. a host at site A with address 10.2.3.4 can communicate with a host at site
B with address 10.4.5.6, and the cloud provider knows that the internal address
10.4.5.6 maps to the APLOMB gateway at site B). The cloud provider allocates no
permanent public IP address for hosts with ‘protected services’ addresses; Internet-
destined connections instead undergo traditional NAPT.

DNS services: For hosts which accept incoming traffic, such as web servers,
a publicly routeable address must direct incoming traffic to the appropriate cloud
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PoP. For these IP addresses, the administrator requests DNS service in the address
manifest, listing the private IP address of the service, the relevant APLOMB gate-
way, and a DNS name. The cloud provider then manages the DNS records for this
address on the enterprise client’s behalf. When a DNS request for this service ar-
rives, the cloud provider (dynamically) assigns a public IP from its own pool of
IP addresses and directs this request to the appropriate cloud PoP and subsequent
APLOMB gateway.

Legacy IP services: While DNS-based services are the common case, enterprise
may require legacy services that require fixed IP addresses. For these services, the
enterprise registers the internal IP address and corresponding APLOMB gateway,
and the cloud provider allocates a static public IP address at a single PoP for the IP
service. For this type of service, we fall back to the single-PoP Cloud-IP solution
rather than DNS redirection discussed in §3.3.

APLOMB gateway

The APLOMB gateway is logically co-located with the enterprise’s gateway router
and has two key functions: (1) maintaining persistent tunnels to multiple cloud
PoPs and (2) steering the outgoing traffic to the appropriate cloud PoP. The gate-
way registers itself with the cloud controller (§3.4.3), which supplies it with a list
of cloud tunnel endpoints in each PoP and forwarding rules (5-tuple→ cloud PoP
Identifier) for redirection. (The gateway router blocks all IP traffic into the net-
work that is not tunneled to a APLOMB gateway.) For security reasons, we use
encrypted tunnels (e.g., using OpenVPN) and for reducing bandwidth costs, we
enable protocol-agnostic redundancy elimination [31]. Note that the functionality
required of the APLOMB gateway is simple enough to be bundled with the egress
router itself or built using commodity hardware.

For scalability and fault tolerance, we rely on traditional load balancing tech-
niques. For example, to load balance traffic across multiple APLOMB gateways,
the enterprise’s private address space can be split to direct traffic to, e.g. 10.1.0.0/17
to one gateway, and 10.1.128.0/17 to another. To handle gateway failures, we en-
vision APLOMB hardware with fail-open NICs configured to direct the packets to
a APLOMB replica under failure. Since each APLOMB box keeps almost no per-
flow state, the replica receiving traffic from the failed device can start forwarding
the new traffic without interruption to existing flows.
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3.4.2 Cloud Functionality
The cloud provider has three main tasks: (1p publicly addressable IP addresses to
the appropriate enterprise customer and internal private address, (2) apply middle-
box processing services to the customers’ traffic according to their policies (§3.4.3),
and (3) tunnel traffic to and from the appropriate APLOMB gateways at enterprise
sites. Thus, the core components at the cloud PoP are:
• Tunnel Endpoints to encapsulate/decapsulate traffic from the enterprise (and to

encrypt/decrypt and compress/decompress if enabled)
• Middlebox Instances to process the customers’ traffic
• NAT Devices to translate between publicly visible IP addresses and the clients’

internal addresses. NAT devices manage statically configured IP to IP map-
pings for DNS and Legacy IP services, and generate IP and port mappings for
Protected Services (§3.4.1).
• Policy switching logic to steer packets between the above components.

Fortunately, it is possible to realize each of these components with existing
solutions and there are many research and commercial solutions to provide these
features (e.g. [57, 39, 11]). These solutions differ along two key dimensions de-
pending on whether the middlebox services are: (1) provided by the cloud infras-
tructure provider (e.g., Amazon) or by third-party cloud service providers running
within these infrastructure providers (e.g., [26]), and (2) realized using hardware-
(e.g., [20, 16]) or software-based middleboxes (e.g., [73, 27, 18, 75]. Our architec-
ture is agnostic to these choices and accommodates a broad range of deployment
scenarios as long as there is some feasible path to implement the four components
described above. The specific implementation we present in this paper runs as a
third-party service using software-based middleboxes over an existing infrastruc-
ture provider.

3.4.3 Control Plane
A driving design principle for APLOMB is to keep the new components intro-
duced by our architecture that are on the critical path – i.e., the APLOMB gate-
way device and the cloud terminal endpoint – as simple and as stateless as pos-
sible. This not only reduces the enterprise’s administrative overhead but also en-
ables seamless transition in the presence of hardware and network failures. To this
end, the APLOMB Control Plane manages the relevant network state representing
APLOMB gateways, cloud PoPs, middlebox instances, and tunnel endpoints. It is
responsible for determining optimal redirection strategies between communicating
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parties, managing and pushing middlebox policy configurations, and dynamically
scaling cloud middlebox capacity to meet demands.

In practice, the control plane is realized in a cloud controller, which manages
every APLOMB gateway, middlebox, tunneling end point, and the internals of the
cloud switching policy.6 Each entity (APLOMB device, middlebox, etc.) registers
itself with the controller. The controller sends periodic ‘heartbeat’ health checks to
each device to verify its continued activity. In addition, the controller gathers RTTs
from each PoP to every prefix on the Internet (for PoP selection) and utilization
statistics from each middlebox (for adaptive scaling). Below we discuss the redi-
rection optimization, policy management, and middlebox scaling performed by the
cloud controller.

Redirection Optimization. Using measurement data from the cloud PoPs, the
cloud controller pushes the current best (as discussed in §3.3.2) tunnel selection
strategies to the APLOMB gateways at the enterprise and mappings in the DNS.
To deal with transient routing issues or performance instability, the cloud controller
periodically updates these tunneling configurations based on the newest measure-
ments from each cloud PoP.

Policy Configuration. The cloud controller is also responsible for implement-
ing enterprise- and middlebox-specific policies. Thus, the cloud provider provides
a rich policy configuration interface that exports the available types of middlebox
processing to enterprise administrators and also implements a programmatic inter-
face to specify the types of middlebox processing required [56]. Enterprise admin-
istrators can specify different policy chains of middlebox processing for each class
of traffic specified using the traditional 5-tuple categorization of flows (i.e., source
and destination IPs, port values and the protocol). For example, an enterprise could
require all egress traffic to go through a firewall→ exfiltration engine→ proxy. and
require that all ingress traffic traverse a firewall → IDS, and all traffic to internal
web services further go through an application-level firewall. If appropriate, the
provider may also export certain device-specific configuration parameters that the
enterprise administrator can tune.

Middlebox Scaling. APLOMB providers have a great deal of flexibility in how
they actually implement the desired middlebox processing. In particular, as utiliza-
tion increases on a particular middlebox, the APLOMB provider simply increases
the number of instances of that middlebox being utilized for a client’s traffic.

Using data from heartbeat health checks on all middleboxes, the cloud con-

6While the cloud controller may be in reality a replicated or federated set of controllers, for
simplicity this discussion refers to a single logically centralized controller.
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Fig. 3.13: Software architecture of APLOMB.

troller detects changes in utilization. When utilization is high, the cloud controller
launches new middleboxes and updates the policy switching framework; when uti-
lization is low, the cloud controller deactivates excess instances. While scaling is
simpler if all middlebox processing is performed in software on standard virtual ma-
chines, providers using hardware middleboxes could achieve the same result using
policy switching alone. Techniques for dynamic scaling under load are well-known
for cloud computing applications like web servers [17]; as such we do not go into
detail here.

3.4.4 Implementation
We built a prototype system for cloud middlebox processing using middlebox pro-
cessing services running on EC2 and APLOMB endpoints in our lab and at the
authors’ homes. We consciously choose to use off-the-shelf components that run
on existing cloud providers and end host systems. This makes our system easy to
deploy and use and demonstrates that the barriers to adoption are minimal. Our
APLOMB endpoint software can be deployed on a stand-alone software router or
as a tunneling layer on an end host; installing and running the end host software is
as simple as connecting to a VPN.

Figure 3.13 is a software architecture diagram of our implementation. We im-
plement a cloud controller on a server in our lab and use geographically distributed
EC2 datacenters as cloud PoPs. Our cloud controller employs a MySQL database
to store data on middlebox nodes, RTTs to and from cloud PoPs, and registered
clients. The cloud controller monitors APLOMB devices, calculates and pushes
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routing tables to the APLOMB devices, requests measurements from the cloud
PoPs, monitors middlebox instances, and scales middlebox instances up or down
as demand varies.

At the enterprise or the end host, the APLOMB gateway maintains several con-
current VPN tunnels, one to a remote APLOMB at each cloud PoP. On startup, the
APLOMB software contacts the cloud controller and registers itself, fetches remote
tunnel endpoints for each cloud PoP, and requests a set of initial tunnel redirec-
tion mappings. A simple tunnel selection layer, populated by the cloud controller,
directs traffic to the appropriate endpoint tunnel, and a redundancy elimination en-
coding module compresses all outgoing traffic. When run on a software router,
ingress traffic comes from an attached hosts for whom the router serves as their
default gateway. Running on a laptop or end host, static routes in the kernel direct
application traffic to the appropriate egress VPN tunnel.

EC2 datacenters host tunnel endpoints, redundancy elimination decoders, mid-
dlebox routers, and NATs, each with an inter-device switching layer and controller
registration and monitoring service. For tunneling, we use OpenVPN [15], a widely-
deployed VPN solution with packages for all major operating systems. We use a
Click [60] implementation of the redundancy elimination technique described by
Anand et al [31]. For middlebox processing, we use Vyatta [24], a customizable
software middlebox. Our default Vyatta installation performs firewalling, intru-
sion detection, caching, and application-layer web filtering. Policy configurations
(§3.4.3) are translated into Vyatta configurations such that each client can have a
unique Vyatta configuration dependent on their needs. Finally, each cloud PoP also
hosts one ‘measurement node’, which periodically issues ping measurements for
RTT estimation to assist in PoP selection.

3.5 Evaluation

We now evaluate APLOMB. First, we present performance benchmarks for three
common applications running over our implementation (§3.5.1).We then demon-
strate APLOMB’s dynamic scaling capability and its resilience to failure (§3.5.2).
Having shown that APLOMB is practical, we return to our goal of outsourcing all
middlebox functionality in an enterprise with a trace-driven evaluation of middle-
box outsourcing using APLOMB, applied to data from a middlebox deployment in
a large enterprise (§3.5.3).
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Fig. 3.14: CDF of HTTP Page Load times for Alexa top 1,000 sites with and without
APLOMB.

3.5.1 Application Performance
We first demonstrate that APLOMB’s architecture is practical for enterprise use
with performance benchmarks for common applications using our APLOMB im-
plementation.

HTTP Page Loads: In Figure 3.14, we plot page load times (fetching the front
page and all embedded content) from a university network for the Alexa top 1,000
most popular web pages with and without APLOMB processing. We performed
this experiment with a vacant cache. For pages at the 50th percentile, page loads
without APLOMB took 0.72 seconds, while page loads with took 0.82 seconds.
For pages at the 95th percentile, using APLOMB results in shorter page load times:
3.85 seconds versus 4.53 seconds.

BitTorrent: While we don’t expect BitTorrent to be a major component of
enterprise traffic, we chose to experiment with Bit Torrent because it allowed us to
observe a bulk transfer over a long period of time, to observe many connections over
our infrastructure simultaneously, and to establish connections to non-commercial
endpoints. We downloaded a 698MB public domain film over BitTorrent with and
without APLOMB from both a university network and from a residential network,
five times repeatedly. The average residential download took 294 seconds without
APLOMB, with APLOMB the download speed increased 2.8% to 302 seconds. The
average university download took 156 seconds without APLOMB, with APLOMB
the average download took 165 seconds, a 5.5% increase.
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Voice over IP: Voice over IP (VoIP) is a common enterprise application, but
unlike the previously explored applications, VoIP performance depends not only on
low latency and high bandwidth, but on low jitter, or variance in latency. APLOMB
easily accommodates this third demand: we ran VoIP calls over APLOMB and
for each call logged the jitter estimator, a running estimate of packet interarrival
variance developed for RTP. Industry experts cite 30ms of one-way jitter as a target
for maximum acceptable jitter [10]. In the first call, to a residential network, median
inbound/outbound jitter with APLOMB was 2.49 ms/2.46 ms and without was 2.3
ms/1.03 ms. In the second, to a public WiFi hotspot, the median inbound/outbound
jitter with APLOMB was 13.21 ms/14.49 ms and without was 4.41 ms/4.04 ms.

In summary, these three common applications suffer little or no penalty when
their traffic is redirected through APLOMB.

3.5.2 Scaling and Failover
To evaluate APLOMB’s dynamic scaling, we measured traffic from a single client
to the APLOMB cloud. Figure 3.15 shows capacity adapting to increased network
load over a 10-minute period. The client workload involved simultaneously stream-
ing a video, repeatedly requesting large files over HTTP, and downloading several
large files via BitTorrent. The resulting network load varied significantly over the
course of the experiment, providing an opportunity for capacity scaling. The con-
troller tracks CPU utilization of each middlebox instance and adds additional ca-
pacity when existing instances exceed a utilization threshold for one minute.

While middlebox capacity lags changes in demand, this is primarily an artifact
of the low sampling resolution of the monitoring infrastructure provided by our
cloud provider. Once a new middlebox instance has been allocated and initialized,
actual switchover time to begin routing traffic through it is less than 100ms. To
handle failed middlebox instances, the cloud controller checks for reachability be-
tween itself and individual middlebox instances every second; when an instance
becomes unreachable, APLOMB ceases routing traffic through it within 100ms.
Using the same mechanism, the enterprise APLOMB can cope with failure of a re-
mote APLOMB, re-routing traffic to another remote APLOMB in the same or even
different cloud PoP, providing fault-tolerance against loss of an entire datacenter.

3.5.3 Case Study
We set out with the goal of outsourcing as many middleboxes as possible and re-
ducing enterprise costs, all the while without increasing bandwidth utilization or
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Fig. 3.15: Network load (Y1) and number of software middlebox instances (Y2)
under load. Experiment used low-capacity instances to highlight scaling dynamics.

latency. We revisit this using the data from the very large enterprise to determine:
• How many middleboxes can the enterprise outsource?
• What are the gains from elastic scaling?
• What latency penalty will inter-site traffic suffer?
• How much does the enterprise’s bandwidth costs increase?

Middleboxes Outsourced: Figure 3.16 shows that the large enterprise can out-
source close to 60% of the middleboxes under a CDN footprint with APLOMB+.

This high fraction of outsourceability comes despite an atypically high deploy-
ment of “internal” firewalls and NIDS at this enterprise. Internal firewalls protect a
host or subnetwork not only from Internet-originated traffic, but from traffic orig-
inated within the enterprise; the most common reason we found for these deploy-
ments was PCI compliance for managing credit card data. While the average en-
terprise of this size deploys 27.7 unoutsourceable internal firewalls, this enterprise
deploys over 100 internal firewalls. From discussions with the network’s adminis-
trators, we learned these were installed in the past to protect internal servers against
worms that preferentially scanned internal prefixes, e.g. CodeRed and Nimda. As
more IT infrastructure moves to the cloud (see §3.6), many internal firewalls will
be able to move to the cloud as well.

Cost Reduction: To evaluate benefits from elastic scaling, in Figure 3.17 we
focus on each site of the enterprise and show the ratio of peak-to-average volumes
for total inter-site traffic. We use sites across three continents: North America (NA-
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Fig. 3.16: Number of middleboxes in the enterprise with and without APLOMB+.
The enterprise has an atypical number of ‘internal’ firewalls and NIDS.

x), Asia (AS-x), and Europe (EU-x). The peak represents a conservative estimate
of the traffic volume the enterprise has provisioned at the site, while the average is
the typical utilization; we see that most sites are provisioned over 2× their typical
load, and some of the smaller sites as much as 12×! In addition, we show peak-
to-average values for the top four protocols in use. The per-protocol numbers are
indicative of elasticity savings per middlebox, as different protocols are likely to
traverse different middleboxes.

Latency: We measured redirection latency for inter-site traffic between the top
eleven sites of the enterprise through the APLOMB infrastructure by pinging hosts
at each site from within EC2. We found that for more than 60% of inter-site pairs,
the latency with redirection is almost identical to the direct RTT. We found that most
sites with inflated latency were in Asia, where EC2 does not have a wide footprint.

We also calculated a weighted inflation value, weighted by traffic volume and
found that in expectation a typical redirected packet experiences only 1.13 ms of
inflation. This results from the fact that the inter-site pairs with high traffic volume
actually have negative inflation, by virtue of one or both endpoints being in the US
or Europe, where EC2’s footprint and connectivity is high.

Bandwidth: Last, we evaluate bandwidth inflation. We ran a traffic trace
with full packet payloads collected at a different small enterprise [12] through our
APLOMB prototype with and without generic redundancy elimination. Without
Generic RE, the bandwidth utilization increased by 6.2% due to encryption and en-
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col.

capsulation overhead. With Generic RE, the bandwidth utilization reduced by 28%,
giving APLOMB+ a 32% improvement over basic APLOMB.

As we observed in §3.2, many larger enterprises already compress their inter-
site traffic using WAN optimizers. To evaluate the impact of switching compression
for inter-site traffic from a traditional WAN optimizer solution to APLOMB+, we
compared our observed benefits to those provided by WAN optimizers at eight of
the large enterprise sites. In Figure 3.18, we measure the bandwidth cost of a given
site in terms of the 95th percentile of the total traffic volume with a WAN Optimizer,
with APLOMB, and with APLOMB+. With APLOMB, the worst case inflation is
52% in the median case and at most 58%; APLOMB+ improves this to a median
case of 3.8% inflation and a worst case of 8.1%.

3.6 Discussion

Before concluding, we mention some final thoughts on the future of “hybrid” en-
terprise/cloud architectures, potential cost models for bandwidth, and security chal-
lenges that continue to face APLOMB and cloud computing.

IT Outsourcing and Hybrid Clouds: APLOMB complements the ongoing move
by enterprises from locally-hosted and managed infrastructure to outsourced cloud
infrastructure. A network administrator at one large enterprise we surveyed re-
ported their company’s management had issued a broad mandate to moving a sig-
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Fig. 3.18: 95th percentile bandwidth without APLOMB, with APLOMB, and with
APLOMB+.

nificant portion of their IT infrastructure to the cloud. Federal government agencies
are also rapidly moving their IT infrastructure to the cloud, in compliance with a
mandate to adopt a ”cloud first” policy for new services and to reduce the number
of existing federal datacenters by 800 before 2015 [62]. As these services move
to the cloud, the middleboxes protecting them (including internal firewalls, which
APLOMB itself cannot outsource) will move to the cloud as well.

Nevertheless, many enterprises plan to keep at least some local infrastructure,
citing security and performance concerns for applications currently deployed lo-
cally [28]. Further, user-facing devices such as laptops, desktops, smartphones, and
printers will always remain within the enterprise – and the majority of middlebox
services benefit these devices rather than servers. With some end hosts moving to
the cloud, and the majority remaining behind in the enterprise, multiple vendors
now offer services for integrating public cloud services with enterprises’ existing
infrastructure [2, 23], facilitating so-called “hybrid clouds” [51]. APLOMB allows
administrators to evade the middlebox-related complexity in this hybrid model by
consolidating middleboxes in only one deployment setting.

Bandwidth Costs: APLOMB reduces the cost of middlebox infrastructure, but it
may increase bandwidth costs due to current cloud business models. Today, tunnel-
ing traffic to a cloud provider necessitates paying for bandwidth twice – once for the
enterprise network’s access link, and again at the cloud provider. Nevertheless, this
does not mean that APLOMB will double bandwidth costs for an enterprise. We ob-
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Pricing Model Total Cost $/GB $/Mbps
Standard EC2 30003.20 0.0586 17.58

Amazon DirectConnect 11882.50 0.0232 6.96
Wholesale Bandwidth 6826.70 0.0133 4.00

Table 3.3: Cost comparison of different cloud bandwidth pricing models given an
enterprise with a monthly transfer volume of 500TB (an overestimate as compared
to the very large enterprise in our study); assumes conversion rate of 1Mbps of
sustained transfer equals 300GB over the course of a month.

served earlier that redundancy elimination and compression can reduce bandwidth
demands at the enterprise access link by roughly 30%. This optimization is not
possible without redirection through a cloud PoP, and could allow a lower capacity,
less expensive access link to satisfy an enterprise’s needs.

The largest factor in the cost of APLOMB for an enterprise is the bandwidth cost
model used by a cloud provider. Today, cloud providers price bandwidth purely by
volume; for example, Amazon EC2 charges between $0.05-$0.12 per GB of out-
going traffic, decreasing as volume increases (all incoming traffic is free). On the
other hand, a dedicated APLOMB service provider would be able to take advan-
tage of wholesale bandwidth, which is priced by transfer rate. We convert between
the two pricing strategies (per-GB and per-Mbps) with the rough conversion fac-
tor of 1Mbps sustained monthly throughput equaling 300GB per month. This is in
comparison with “wholesale” bandwidth prices of $3-$5 per Mbps for high-volume
customers. As a result, though current pricing strategies are not well-suited for
APLOMB, a dedicated APLOMB provider could offer substantially lower prices.
Indeed, Amazon offers a bulk-priced bandwidth service, “DirectConnect”, which
offers substantially lower per-GB costs for high-volume customers [2]. Table 3.3
provides a comparison of the bandwidth costs for a hypothetical enterprise which
transfers 500TB of traffic per month to and from a cloud service provider under
each of these models. These charges a minimal compared to expected savings in
hardware, personnel, and other management costs.

Security Challenges: Adopting APLOMB brings with it the same security ques-
tions as have challenged cloud computing. These challenges have not stopped
widespread adoption of cloud computing services, nor the willingness of security
certification standards to certify cloud services (for example, services on Amazon
EC2 can achieve PCI-1 compliance, the highest level of certification for storing
credit card data). However, these challenges remain concerns for APLOMB and
cloud computing in general. Just as cloud storage services have raised questions

66



about providing a cloud provider unencrypted access to data, cloud middlebox ser-
vices give the cloud provider unencrypted access to traffic flows. Although VMs
and other isolation techniques aim to protect customers of a cloud service from
other, malicious, customers, some have demonstrated in the cloud computing con-
text information leakage, e.g. through side-channels [72]. APLOMB encrypts tun-
neled traffic to and from the enterprise to protect against man-in-the-middle attacks,
and allocates each client it’s own set of VMs for middlebox processing, but ulti-
mately it will not appeal to companies whose security policies restrict them from
cloud computing in general.

3.7 Related Work

Our work contributes to and draws inspiration from a rich corpus of work in cloud
computing, redirection services, and network management.

Cloud Computing: The motivation for APLOMB parallels traditional argu-
ments in favor of cloud computing, many of which are discussed by Armbrust et
al. [34]. APLOMB also adapts techniques from traditional cloud solutions, e.g.
utilization monitoring and dynamic scaling [17], and DNS-based redirection to dat-
acenters with optimal performance for the customer [79].

Middlebox Management: Others have tackled middlebox management chal-
lenges within the enterprise [56, 57, 37, 45, 75]. Their solutions offer insights
we can apply for managing middleboxes within the cloud – e.g., the policy-routing
switch of Joseph et al. [57], the management plane of Ballani et al. [37], and the con-
solidated appliance of Sekar et al. [75]. None of these proposals consider moving
middlebox management out of the enterprise entirely, as we do. Like us, ETTM [45]
proposes removing middleboxes from the enterprise network but, where we advo-
cate moving them to the cloud, ETTM proposes the opposite: pushing middlebox
processing to enterprise end hosts. As such, ETTM still retains the problem of
middlebox management in the enterprise. Sekar et al [75] report on the middlebox
deployment of a single large enterprise; our survey is broader in scope (covering
a range of management and failure concerns) and covers 57 networks of various
scales. They also propose a consolidated middlebox architecture that aims to ame-
liorate some of the administrative burden associated with middlebox management,
but they do not go so far as to propose removing middleboxes from the enterprise
network entirely.

Redirection Services: Traffic redirection infrastructures have been explored in
prior work [32, 78, 82] but in the context of improving Internet or overlay routing
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architectures as opposed to APLOMB’s goal of enabling middlebox processing in
the cloud. RON showed how routing via an intermediary might improve latency;
we report similar findings using cloud PoPs as intermediaries. Walfish et al. [82]
propose a clean-slate architecture, DOA, by which end hosts explicitly address mid-
dleboxes. Gibb et al. [49] develop a service model for middleboxes that focuses on
service-aware routers that redirect traffic to middleboxes that can be in the local
network or Internet.

Cloud Networking: Using virtual middlebox appliances [24] reduces the phys-
ical hardware cost of middlebox ownership, but cannot match the performance of
hardware solutions and does little to improve configuration complexity. Some star-
tups and security companies have cloud-based offerings for specific middlebox ser-
vices: Aryaka [6] offers protocol acceleration; ZScalar [26] performs intrusion de-
tection; and Barracuda Flex [7] offers web security. To some extent, our work can
be viewed as an extreme extrapolation of their services and we provide a compre-
hensive exploration and evaluation of such a trend. CloudNaaS [39] and startup
Embrane [11] aim at providing complete middlebox solutions for enterprise ser-
vices that are already in the cloud.

3.8 Conclusion

Outsourcing middlebox processing to the cloud relieves enterprises of major prob-
lems caused by today’s enterprise middlebox infrastructure: cost, management
complexity, capacity rigidity, and failures. Our survey of 57 enterprise network
managers guides the design of APLOMB, a practical system for middlebox pro-
cessing in the cloud. APLOMB succeeds in outsourcing the vast majority of mid-
dleboxes from a typical enterprise network without impacting performance, making
scalable, affordable middlebox processing accessible to enterprise networks of ev-
ery size.
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4 Discussion and Conclusion

Netcalls and APLOMB both present deployment models where ISPs and cloud
providers can export middleboxes ‘as a service’ to external clients. As we’ve shown,
breaking the ‘unilateral model’ of middlebox deployment today – where enterprise
administrators deploy middleboxes for local use only and with a single administra-
tive policy – can present new business models, save on costs for clients, and create
new usage capabilities for clients.

Netcalls and APLOMB each present a very different scenario, however, for who
will deploy these middleboxes and how they will be used. Netcalls envisions ISPs
as deploying middlebox services, where APLOMB envisions deployment in the
cloud. Netcall users are end host applications with relatively fine-grained configu-
ration policies; APLOMB users are enterprise administrators with relatively course-
grained configuration policies.

When it comes to likelihood of adoption, it is clear that APLOMB is the more
deployable of the two, for example:

• Implementing APLOMB can be done in software with out-of-the-box com-
ponents. Implementing Netcalls requires transitioning network infrastructure
to SDN, with an entirely new management plane for individual middleboxes.

• Deploying in the cloud means that any new start-up can deploy APLOMB
services on multi-purpose infrastructure; and hence that there are countless
possible players who may decide to serve as providers. Deploying on the
Internet means that existing ISPs must move to adoption – Netcalls cannot be
deployed by ‘any startup’, but only a very specific set of companies.

• The client base for APLOMB exists today: enterprise network administra-
tors. Applications that invoke netcalls are nonexistent (besides the prototypes
presented earlier).

Given the greater promise for APLOMB’s adoption, we might ask, can we im-
plement netcalls on top of an APLOMB deployment? For many middlebox ser-
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vices, implementing netcalls-style function calls on top of APLOMB is entirely
feasible. VPN tunneling can be performed not only at the edge of an enterprise,
but directly from any laptop. Thus, any individual user may become an APLOMB
client. Individual applications might use the netcalls protocol to communicate with
resolution servers that resolve client requests to middleboxes in the cloud rather
than ISPs.

While this deployment model might serve to deploy netcalls sooner than we
may expect any ISP deployment, the cloud is, however, limited in the set of network
processing services that it can deploy. For example, the cloud can not implement
‘hop-by-hop’ services such as any form of QoS guarantee, as these services must
be deployed in the network. Further, the cloud cannot protect against network-layer
DDoS, as netcalls can. To obtain the full capabilities promised by netcalls, we must
rely on an eventual ISP deployment.

Although ultimately the complete success of netcalls relies on an ISP deploy-
ment, a gradual deployment evolution from APLOMB and a more limited version
of netcalls isn’t a dismal prospect. Early-stage startups are today deploying limited
versions of APLOMB [26, 6] which focus solely on a single type of middlebox
appliance. At the same time, ISPs are starting to deploy some, limited middlebox
services to enterprises, e.g. [35] for DDoS defense. Should these initial services
prove useful, it is not hard to imagine that these companies will expand to a full
suite of enterprise middlebox services in the cloud. Adding limited netcalls-style
programmability is not an outrageous step forward – once the middlebox infras-
tructure is in place for a multi-enterprise middlebox service. Hence, there is a path
from today’s deployments towards even netcalls-style services.

In this thesis, we have shown how middlebox services, where third party providers
deploy middlebox services and expose them for usage and configuration, can lead to
new business models and new capabilities for middlebox usage. APLOMB presents
many benefits, primarily in terms of cost, to enterprise administrators who may
outsource their middlebox processing to cloud providers. Netcalls presents new
programmability features for application developers, who explicitly configure mid-
dlebox services in the networks their traffic traverses. We’ve demonstrated the pos-
sible benefits from these architectures (or a hybrid of the two); from here forward
one can only only evaluate the varying forms that middlebox services may take as
the market drives adoption.
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