
Ensō: A Streaming Interface for NIC-Application Communication
Hugo Sadok Nirav Atre Zhipeng Zhao Daniel S. Berger

James C. Hoe Aurojit Panda Justine Sherry Ren Wang
Carnegie Mellon University Intel Microsoft New York University University of Washington

Abstract
Today, most communication between the NIC and software
involves exchanging fixed-size packet buffers. This packetized
interface was designed for an era when NICs implemented few
offloads and software implemented the logic for translating
between application data and packets. However, both NICs and
networked software have evolved: modern NICs implement
hardware offloads, e.g., TSO, LRO, and serialization offloads
that canmore efficiently translate between application data and
packets. Furthermore, modern software increasingly batches
network I/O to reduce overheads. These changes have led to
a mismatch between the packetized interface, which assumes
that the NIC and software exchange fixed-size buffers, and
the features provided by modern NICs and used by modern
software. This incongruence between interface and data adds
software complexity and I/O overheads, which in turn limits
communication performance.

This paper proposes Ensō, a new streaming NIC-to-software
interface designed to better support how NICs and software
interact today. At its core, Ensō eschews fixed-size buffers, and
instead structures communication as a stream that can be used
to send arbitrary data sizes. We show that this change reduces
software overheads, reduces PCIe bandwidth requirements, and
leads to fewer cache misses. These improvements allow an Ensō-
based NIC to saturate a 100Gbps link with minimum-sized
packets (forwarding at 148.8Mpps) using a single core, improve
throughput for high-performance network applications by 1.5–
6×, and reduce latency by up to 43%.

1 Introduction

Network performance dictates application performance for
many of today’s distributed and cloud computing applica-
tions [48]. While growing application demands have led to
a rapid increase in link speeds from 100 Mbps links [31] in
2003 to 100 Gbps in 2020 [89] and 200 Gbps in 2022 [58], a
slowdown in CPU scaling has meant that applications of-
ten cannot fully utilize these links. Consequently, recent
changes to NICs and networked software have focused on
reducing the number of CPU cycles required for communica-
tion: NIC offloads allow the NIC to perform common tasks
(e.g., segmentation) previously implemented in software; and
more efficient network I/O libraries and interfaces, includ-
ing DPDK and XDP, allow applications to reduce processing
in the network stack. We begin with the observation that
despite these changes, utilizing 100 Gbps or 400 Gbps links

remains challenging. We demonstrate that this is because of
inefficiencies in how software communicates with the NIC.
While NICs and the software that communicate with them
have themselves changed significantly in the last decade,
the NIC-to-software interface has remained unchanged for
decades.1

Most NICs currently provide an interface where all com-
munication between software and the NIC requires sending
(and receiving) a sequence of fixed-size buffers, which we
call packet buffers in this paper. Packet buffer size is dictated
by software, and is usually chosen to be large enough to fit
MTU-sized packets, e.g., Linux uses 1536 byte packet buffers
(sk_buffs) and DPDK [19] uses 2kB packet buffers (mbufs)
by default. We use the term packetized NIC interface to refer
to any NIC-to-software interface that uses packet buffers
for communication. We observe that two changes in how
NICs are used today have led to an impedance mismatch
with packetized interfaces.

First, many NIC offloads such as TCP Segmentation Of-
floading (TSO) [20, 39], Large Receive Offloading (LRO) [14],
serialization offloads [44, 71, 86], and transport offloads [3,
14, 27, 77] take inputs (and produce outputs) that can span
multiple packets and vary in size. In using these offloads
with a packetized interface, software must needlessly split
(and recombine) data into multiple packet buffers when com-
municating with the NIC.

Second, software logic for sending (and receiving) packets
uses batches of multiple packets to reduce I/O overheads. In
the common case, NICs and software process packets in a
batch sequentially. However, packetized interfaces cannot
ensure that packets in a batch are in contiguous and sequen-
tial memory locations, reducing the effectiveness of several
CPU and IO optimizations.

This mismatch between how modern NICs are used and
what the packetized interface provides causes three problems
that affect application performance:
Packetized abstraction: While imposing fixed-size buffers
works reasonably well when software always needs to ex-
change MTU-sized packets, it becomes clumsy when used
with higher-level abstractions such as application-level mes-
sages (e.g., RPCs), bytestreams, or even simpler offloads such
as LRO. When using this interface, the NIC (or software)
must split messages that are larger than the packet buffer
into multiple packet buffers. Applications then need to deal

1Osiris [22], published in 1994, describes an interface that is nearly
identical to the one adopted by many modern NICs.



with input that is split across multiple packet buffers. Do-
ing so either requires that they first copy data to a separate
buffer, or that the application logic itself be designed to deal
with packetized data. Indeed, implementing any offload or
abstraction that deals with more than a single packet’s worth
of data (e.g., transport protocols, such as TCP, that provide a
bytestream abstraction) in a NIC that implements the packe-
tized interface requires copying data from packet buffers to
a stream. This additional copy can add significant overhead,
negating some of the benefits of such offloads [72, 88].

Poor cache interaction: Because the packetized interface
forces incoming and outgoing data to be scattered across
memory, it limits the effectiveness of prefetchers and other
CPU optimizations that require predicting the next memory
address that software will access—a phenomenon that we
refer to as chaotic memory access. As we show in §7, chaotic
memory accesses can significantly degrade application per-
formance, particularly those that deal with small requests
such as object caches [9, 57] and key-value stores [4, 52].

Metadata overhead: Since the packetized interface relies
on per-packet metadata, it spends a significant portion of
the PCIe bandwidth transferring metadata—as much as 39%
of the available bandwidth when using small messages. This
causes applications that deal with small requests to be bottle-
necked by PCIe, which prevents them from scaling beyond
a certain number of cores. The use of per-packet metadata
also contributes to an increase in the number of memory
accesses required for software to send and receive data, fur-
ther reducing the cycles available for the application. We
observed scalability issues due to PCIe bottleneck in our
implementation of Google’s Maglev Load Balancer [23].

In this paper, we propose Ensō, a new interface for NIC-
application communication that breaks from the lower-level
concept of packets. Instead, Ensō provides a streaming ab-
straction that the NIC and applications can use to commu-
nicate arbitrary-sized chunks of data. Doing so not only
frees the NIC and application to use arbitrary data formats
that are more suitable for the functionality implemented by
each one but also moves away from the performance issues
present in the packetized interface. Because Ensō makes
no assumption about the data format itself, it can be repur-
posed depending on the application and the offloads enabled
on the NIC. For instance, if the NIC is only responsible for
multiplexing/demultiplexing, it can use Ensō to deliver raw
packets; if the NIC is also aware of application-level mes-
sages, it can use Ensō to deliver entire messages and RPCs
to the application; and if the NIC implements a transport
protocol, such as TCP, it can use Ensō to communicate with
the application using bytestreams.

To provide a streaming abstraction, Ensō replaces ring
buffers containing descriptors, used by the current NIC in-
terface, with a ring buffer containing data. The NIC and
the software communicate by appending data to these ring

buffers. Ensō treats buffers as opaque data, and does not
impose any requirements on their content, structure or size,
thus allowing them to be used to transfer arbitrary data,
whose size can be as large as the ring buffer itself. Ensō
also significantly reduces PCIe bandwidth overhead due to
metadata, because it is able to aggregate notifications for
multiple chunks of data written to the same buffer. Finally,
it enables better use of the CPU prefetcher to mask memory
latency, thus further improving application performance.

Although the insight behind this design is simple, it is chal-
lenging to implement in practice. For example, CPU-NIC
synchronization can easily lead to poor cache performance:
any approach where the NIC and CPU poll for changes at
a particular memory location will lead to frequent cache in-
validation. Ensō avoids this obstacle by relying on explicit
notifications for CPU-NIC synchronization. Unfortunately,
explicit notifications require additional metadata to be sent
over the CPU-NIC interconnect, which can negate any bene-
fits for interconnect bandwidth utilization. Ensō mitigates
this overhead by sending notifications reactively. We dis-
cuss our synchronization strategy in detail, as well as other
challenges to the Ensō design in §4.

To understand its performance, we fully implement Ensō
using an FPGA-based SmartNIC. We describe our hardware
and software implementations in §5 and how Ensō can be
used depending on the functionality offered by the NIC in
§6. In §7 we present our evaluation of Ensō, including its
use in four applications: the Maglev load balancer [23], a
network telemetry application based on NitroSketch [54],
the MICA key-value store [52], and a log monitor inspired by
AWS CloudWatch Logs [6]. We also implemented a software
packet generator that we use in most of the experiments.2
We observe speedups of up to 6× relative to a DPDK imple-
mentation for Maglev, and up to 1.47× for MICA with no
hardware offloads.

Finally, while Ensō is optimized for applications that pro-
cess data in order, we show that Ensō also outperforms the
existing packetized interface when used by applications that
process packets out of order (e.g., virtual switches), despite
requiring an additional memory copy (§7.2.2).

Ensō is fully open source, with our hardware and software
implementations available at https://enso.cs.cmu.edu/.

2 Background and Motivation

The way software (either the kernel or applications using
a kernel-bypass API) and the NIC exchange data is defined
by the interface that the NIC hardware exposes. Today,
most NICs expose a packetized NIC interface. This includes
NICs from several companies including Amazon [2], Broad-
com [12], Intel [39], Marvell [56], and others. Indeed, prior

2Developing this software packet generator was a necessary first step
in evaluating Ensō because no existing software packet generators could
scale to the link rates we needed to stress test Ensō!

https://enso.cs.cmu.edu/
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Figure 1: Data structures used to receive packets in a packetized NIC
interface. Each packet is placed in a separate buffer that can be arranged
arbitrarily in memory.

work [68] found that of the 44 NIC drivers included in DPDK,
40 use this interface. Due to its ubiquity, the packetized
NIC interface has dictated the API provided by nearly all
high-performance network libraries, including io_uring [15],
DPDK [19] and netmap [73]. In this section, we describe the
packetized NIC interface and highlight some of the issues
that it brings to high-performance applications.

2.1 Packetized NIC Interface

A core design choice in the packetized NIC interface is to
place every packet in a dedicated packet buffer. The NIC and
the software communicate by exchanging packet descriptors.
Descriptors hold metadata, including packet size, what pro-
cessing the NIC should perform (e.g., update the checksum
or segment the packet), a flag bit, and a pointer to a separate
packet buffer which holds the actual packet data. Most packet
processing software pre-allocate a fixed number of buffers
for packets; new packets (either generated by an applica-
tion or incoming from the network) are assigned to the next
available buffer in the pool, which may not reside in memory
anywhere near the preceding or following packet. Because
software does not know the size of incoming packets before-
hand, buffers are often sized so that they can accommodate
MTU-sized packets (e.g., 1536B in Linux and 2kB in DPDK).

Figure 1 shows an example of a packetized NIC interface
being used to receive four packets from a particular hardware
queue on the NIC. The NIC queue is associated with a set
of NIC registers that can be used to control a receive (RX)
descriptor ring buffer and a transmit (TX) descriptor ring
buffer. Before being able to receive packets, the software
informs the NIC of the addresses of multiple available buffers
in its pool by enqueueing descriptors pointing to each one
in the RX descriptor ring buffer. The NIC can then use DMA
to write the incoming packet data into the next available
packet buffer and enqueue updated descriptors containing
metadata such as the packet size. Importantly, the NIC also
sets a ‘flag’ bit in the descriptor to signal to the software that
packets have arrived for this buffer. Observing a notification
bit for the descriptor under the head pointer, the software
can then increment the head pointer.

A similar process takes place for transmission: the sending
software assembles a set of descriptors for packet buffers that
are ready to be transmitted and copies the descriptors—but
not the packets themselves—into the TX ring buffer; the flag
bit in the descriptor is now used to signal that the NIC has

transmitted (rather than received) a packet.
One of the major benefits of dedicating buffers for each

packet is that multiplexing/demultiplexing can be done effi-
ciently in software. If the software transmitting packets is the
kernel, this might mean associating each descriptor/packet
pair with an appropriate socket; if the software in use is a
software switch [32, 67] this might mean steering the right
packet to an appropriate virtual machine. Either way, the
cleverness of the packetized NIC interface in using dedicated
packet buffers shines here: rather than copying individual
packets in the process of sorting through inbound packets,
the switching logic can deliver packet pointers to the appro-
priate endpoints. These packets can then be processed and
freed in arbitrary order.

The usage model for a modern high-performance software
stack, however, looks very different. Instead of one software
entity (e.g., kernel, software switch) mediating access to the
NIC, there may be many threads or processes with direct NIC
access (i.e., kernel bypass). High-performance NIC ASICs
expose multiple hardware queues (as many as thousands [39])
so that each thread or process can transmit and receive data
directly to the NIC without coordination between them. The
NIC then takes on all of the responsibilities of demultiplexing,
using, e.g., RSS [82], Intel’s Flow Director [39], or (for a very
rich switching model) Microsoft’s AccelNet [28]. In this
setting, the multiplexing/demultiplexing capabilities of the
packetized NIC interface offer no additional value.

2.2 Issues with a Packetized Interface
While many high-performance applications today gain little
from a packetized interface, they still need to pay for the over-
heads accompanying it. Shoehorning data communication
between the NIC and applications into fixed-sized chunks
leads to inefficient use of CPU caches and PCIe bandwidth
for small requests, as well as additional data copies due to
fragmentation for applications that rely on large messages
or bytestreams.

In this section, we conduct microbenchmarks that isolate
these issues, and in §7, we also show the impact that these
issues have on real applications.
Chaotic Memory Access: We experiment with a simple
DPDK-based ping/pong program (a description of our testbed
is in §7) which receives a packet, increments a byte in the
packet payload, and re-transmits it. For this program, we
observed maximum throughput of 40 Gbps using a 100 Gb
NIC (Intel E810) and a single 3.1 GHz CPU core. When we
conduct a top-down analysis [43], we see that the application
is backend-bound, primarily due to L1 and L2 cache misses.
Figure 2a shows around 6% miss ratio for the L1d and a 55%
miss ratio for the L2 cache. This high cache miss ratio is a
direct consequence of using per-packet buffers in the packe-
tized NIC interface. First, because packet buffers themselves
are scattered in memory, reads and writes to packet data evade
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Figure 2: PCIe bandwidth and cache misses for an application forwarding
small packets with a packetized NIC interface (E810).

any potential benefit from shared cache lines or prefetching.3
Applications like key-value stores [4, 52] or packet proces-
sors [18] exhibit very high spatio-temporal locality in their
data access: they are designed to run to completion (i.e., they
continue working on a packet or batch until the work for that
item is completed, leading to repeated accesses to the same
data), and they operate over incoming packets or batches in
the order in which they arrive (i.e., the current item being
processed serves as an excellent predictor of the next one).
However, this structure is not realized in the memory layout
of packetized buffers, and hence to any cache optimizations,
reads and writes appear unpredictable. Second, because every
packet is paired with a descriptor, the total amount of mem-
ory required to store all of the data required for I/O increases,
exacerbating last-level cache contention simply because more
data needs to be accessed. Indeed, prior work [55, 81] has re-
peatedly demonstrated that the size of the working set for
packet processing applications often outgrows the amount
of cache space dedicated to DDIO [35], negating the benefits
of this hardware optimization to bring I/O data directly into
the cache. As we discuss in detail in §7.2.3, using a different
NIC interface that facilitates sequential memory accesses
can drop the miss ratio from 6% to 0.2% for the L1d cache,
and from 55% to 9% for the L2 cache.

Metadata Bandwidth Overhead: We observe that the
packetized NIC interface requires the CPU and the NIC to
exchange both descriptors and packet buffers. This leads to
the second problem with the packetized interface: up to 39%
of the CPU to NIC interconnect bandwidth is spent transferring
descriptors (Figure 2b). While NIC-CPU interconnect line
rates are typically higher than network line rates, the gap
between them is relatively narrow. This is particularly prob-
lematic for small transfers as the PCIe theoretical limit drops
to only 85 Gbps with 64-byte transfers [62]. We also expect
this gap to remain small in the future as a state-of-the-art
next generation server with a 400 Gbps Ethernet connection
and 512 Gbps of PCIe 5.0 bandwidth would still bottleneck
with 39% of bandwidth wasted on metadata. This observa-
tion complements recent studies that also point to the PCIe
as a source of congestion for transport protocols [1].

3We note here that the aforementioned performance penalty arises in
spite of the fact that DPDK performs mbuf-level software prefetching.
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In summary: By pairing every packet with a separate de-
scriptor, the packetized NIC interface was well designed for
a previous generation of high-throughput networked appli-
cations which needed to implement multiplexing in software.
However, for today’s high-performance applications, it in-
troduces unnecessary performance overheads.

3 Ensō Overview

Ensō is a new streaming interface for NIC-application com-
munication. Ensō’s design has three primary goals: (1) flexi-
bility, allowing it to be used for different classes of offloads
operating at different network layers and with different data
sizes; (2) low software overhead, reducing the number of cy-
cles that applications need to spend on communication; and
(3) hardware simplicity, enabling practical implementations
on commodity NICs.

Ensō is designed around the Ensō Pipe, a new buffer ab-
straction that allows applications and the NIC to exchange
arbitrary chunks of data as if reading and writing to an un-
bounded memory buffer. Different from the ring buffers
employed by the packetized interface (which hold descrip-
tors to scattered packet buffers), an Ensō Pipe is implemented
as a data ring buffer that contains the actual packet data.

High-level operation: In Figure 3 we show how an appli-
cation, with two Ensō Pipes, receives messages. Initially, the
Ensō Pipes are empty, and the HeadSW and TailNIC point to
the same location in the buffer 1 . When the NIC receives
messages, it uses DMA to enqueue them in contiguous mem-
ory owned by the Ensō Pipes 2 . In the figure, the NIC en-
queues two messages in Ensō Pipe A’s memory, and three in
Ensō Pipe B’s memory. The NIC informs the software about
this by also enqueuing two notifications (one for each Ensō
Pipe) in the notification buffer. The software uses these noti-
fications to advance TailNIC and process the messages. Once
the messages have been processed, the software writes to a
Memory-Mapped I/O (MMIO) register (advancing HeadSW)
to notify the NIC—allowing the memory to be reused by later
messages 3 . Sending messages is symmetric, except for the
last step: the NIC notifies the software that messages have
been transmitted by overwriting the notification that the
CPU used to inform the NIC that a message was available to
be transmitted.



Ensō Pipe’s flexibility: Although Figure 3 shows the steps
to send messages, because Ensō Pipes are opaque, they can be
used to transmit arbitrary chunks of data. These can be raw
packets, messages composed of multiple MTU-sized packets,
or even an unbounded bytestream. The format of the data
is dictated by the application and the offloads running on
the NIC. Moreover, Ensō Pipes’ opaqueness means that they
can be mapped to any pinned memory within the applica-
tion’s memory space. Thus, by mapping both the RX and TX
Ensō Pipes to the same region, network functions and other
forwarding applications can avoid copying packets. In our
evaluation (§7) we use this approach when implementing
Maglev and a Network Telemetry application.

Performance advantages of an Ensō Pipe: The fact that
data can be placed back-to-back inside an Ensō Pipe ad-
dresses both of the performance challenges we listed previ-
ously: First, Ensō Pipes allow applications to read and write
I/O data sequentially, thus avoiding chaotic memory accesses.
Second, as shown in Figure 3, inlining data in an Ensō Pipe
removes the need for per-packet descriptors, thus reducing
the amount of metadata exchanged over the PCIe bus, and
reducing cycles spent managing (i.e., allocating and freeing)
packet buffers.

Challenges: Although implementing a ring buffer for data
transfer is, on its own, a simple idea, coordinating the notifi-
cations between the CPU and the NIC to update head and
tail pointers turns out to be challenging.

Efficient coordination: The packetized interface coordinates
incoming and outgoing packets by ‘piggybacking’ notifica-
tions in the descriptor queue itself. Each descriptor includes
a ‘flag bit’ that can be used to signal when the descriptor is
valid. Software polls the next descriptor’s flag bit to check if
a new packet arrived. We cannot use the same strategy for
Ensō Pipes as they do not assume a format for the data in
the buffer, and hence cannot embed control signals in it.

In §4.1, we discuss how naïve approaches to notification
can stress worst-case performance of MMIO and DMA. In
particular, concurrent accesses to the same memory address
can create cache contention between the CPU and the NIC.
Ensō uses dedicated notification buffers to synchronize up-
dates to head and tail pointers; when combined with batching
and multiqueue processing, the notification buffer approach
reduces the threat of cache contention.

Notification pacing: Ensō Pipes are designed so that notifi-
cations for multiple packets can be combined, reducing the
amount of metadata transferred between the CPU and the
NIC. However, it is still important to decide when to send
notifications: when sent too frequently they waste PCIe
bandwidth and add software overheads, but if sent too in-
frequently the core might be idle waiting for notification,
thus reducing throughput. Ensō includes two mechanisms,
reactive notifications and notification prefetching (§4.2), that

control when notifications are sent. These mechanisms are
naturally adaptive, i.e., they minimize the number of notifi-
cations sent without limiting throughput, and can be imple-
mented without adding hardware complexity.

Low hardware complexity and state: Because the design of
Ensō involves both hardware and software, we must be care-
ful to not pay for software simplicity with hardware com-
plexity. Ensō favors coordination mechanisms that require
little NIC state. We aim for a design that is simple and easily
parallelized. We present Ensō’s hardware design in §5.

Target applications: Ensō implements a streaming inter-
face that is optimized for cases where software processes
received data in order. Our evaluation (§7) shows that this
covers a wide range of network-intensive applications.

One might expect that the resulting design is ill-suited for
applications that need to multiplex and demultiplex packets
(e.g., virtual switches like Open vSwitch [67] and BESS [32]),
as such applications require additional copies with Ensō.4
However, perhaps surprisingly, Ensō outperforms the pack-
etized interface even when it requires such additional copies.
As we show in §7.2.2, when comparing the performance of
an application that uses Ensō and copies each packet, to a
similar DPDK-based application that does not copy packets,
using a CAIDA trace [13] (average packet size of 462 B), we
find that Ensō’s throughput is still 28% higher than DPDK’s
(92.6 Gbps vs. 72.6 Gbps). We discuss how Ensō can be used
depending on the applications and the functionality offered
by the NIC in §6.

4 Efficient Notifications

The key challenges in Ensō arise from efficiently coordinat-
ing Ensō Pipes between the CPU and the NIC. In this section,
we describe how Ensō efficiently coordinates pipes using
notifications (§4.1) and how it paces such notifications (§4.2).

4.1 Efficient Ensō Pipe Coordination

Recall from Figure 3 that the software and the NIC coordinate
access to RX Ensō Pipes using HeadSW and TailNIC and to TX
Ensō Pipes using HeadNIC and TailSW. How should software
and the NIC communicate pointer updates?

In the descriptor ring buffers employed by the packetized
NIC interface, software communicates pointer updates to
the NIC using MMIO writes, and the NIC communicates
pointer updates via inline signaling in the descriptor buffer
itself [25, 39], avoiding the overheads of MMIO reads. Be-
cause the descriptor’s format is defined by the NIC, the NIC

4Note that this overhead only affects applications that multi-
plex/demultiplex packets, and does not apply to software, e.g., TCP stacks,
that processes packet data but might need to reorder packets. This is because
reordering packet data (rather than whole packets) requires a memory copy
when using either interface.
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can dedicate a ‘flag signal’ in every descriptor to signal that
the descriptor is valid. Software can then poll the next de-
scriptor until its flag becomes valid. This way, there is no
need for the NIC to explicitly tell software of pointer updates.
Unfortunately, we cannot use this approach for Ensō. While
Ensō Pipes can still use MMIO writes for pointer updates
from software, we cannot embed inline signaling in the Ensō
Pipe itself since we do not impose any structure on the data.

We considered several design options to communicate
pointer updates. We focus on one illuminating rejected de-
sign here: sharing an address in main memory between the
NIC and software. With each Ensō Pipe, we might have
a dedicated address in memory where the NIC writes the
latest TailNIC. The software can then poll this address to de-
termine the latest value. Unfortunately, this approach leads
to contention because every time the NIC writes to memory,
the cache entry on the CPU is invalidated. If software con-
tinues to poll the same cache line, the resulting contention
reduces throughput by orders of magnitude: we measured a
throughput below 5 Gbps when using small transfers with
this approach. We discuss other rejected approaches in Ap-
pendix A.

4.1.1 Notification Buffer

Ensō uses a notification buffer to communicate pointer up-
dates. Although the structure of the notification buffer on
its own does not solve the cache contention challenge, when
combined with batched notifications and when it is used to ag-
gregate notification updates to/from multiple Ensō Pipes, this
approach prevents the CPU from busy waiting on the shared
cache line and hence avoids contention-induced slowdowns.

Figure 4 shows an RX Ensō Pipe with its corresponding
notification buffer. It shows how a single notification indi-
cates the presence of multiple sequential chunks of data at
the same time; we discuss how notifications are ‘batched’ or
coalesced in §4.2. Notifications contain the latest TailNIC for
a given RX Ensō Pipe as well as a flag signal that software can
use to check if the next notification is ready to be consumed.
As is done typically with descriptor ring buffers, software
advances the NotificationHeadSW using an MMIO write after
consuming a notification. Like an RX Ensō Pipe, a TX Ensō
Pipe also uses a separate notification buffer to synchronize
pointer updates. But software enqueues new notifications
when it wants to transmit a chunk of data and the NIC over-
writes the transmission notification with a completion notifi-

cation once it is done transmitting the corresponding batch.
Completions flip a flag signal, so that software can check if
the following cache line corresponds to a completion or a
pending TX notification.

4.1.2 Multiplexing and Scaling

Within a single thread: To let a single thread efficiently
access multiple Ensō Pipes, we associate multiple Ensō Pipes
with the same notification buffer. To accomplish this, notifi-
cations include an Ensō Pipe ID alongside the TailNIC and the
flag signal that we discussed before. As a result, software can
probe a single notification buffer to retrieve updates from
multiple Ensō Pipes. This avoids the known scalability issues
from needing to poll multiple queues [59, 76].

Among multiple threads: To let multiple threads send
and receive data independently, Ensō supports multiple noti-
fication buffers. Each thread can use a dedicated notification
buffer, avoiding costly synchronization primitives. When
setting up a new Ensō Pipe, software tells the NIC which
notification buffer is associated with it. Therefore, the NIC
knows to which notification buffer to send a notification.

Among multiple applications: In addition to using inde-
pendent notification buffers, Ensō ensures that applications
only have access to their own subset of Ensō Pipes and noti-
fication buffers. Each queue’s MMIO pointer register pair is
kept in its own dedicated page-aligned block of memory [22].
This lets the kernel map the pointer registers at a per-queue
granularity to the address space of the application that re-
quested it.

4.1.3 Notifications: Contention and Overhead

Allowing multiple Ensō Pipes to share the same notification
queue (§4.1.2), and having notifications arrive only for larger
batches of data (§4.2) naturally prevents contention by keep-
ing the NIC ‘ahead’ of the CPU in updating the notification
buffer, and also reduces the PCIe overhead of communicating
these notifications. As the CPU reads in data for one Ensō
Pipe, the NIC is writing new entries for subsequent Ensō
Pipes. Because the CPU is processing larger batches of data,
it is busier for longer before it needs to check the notification
buffer. Hence, as line rates go up, the two are unlikely to be
accessing the same cache line simultaneously.

4.2 Pacing Notifications

As mentioned above, Ensō batches notifications aiming to
reduce metadata bandwidth consumption and to keep CPUs
busy processing data, rather than waiting for notifications.
Using the wrong batch size, however, is problematic: a sys-
tem that uses batch sizes that are too small would unneces-
sarily transmit extra metadata, and a system that uses batch



func onPktArrival()
if status = 0 then

notify (TailNIC)
𝑠𝑡𝑎𝑡𝑢𝑠← 1

func onRxUpdate(HeadSW)
if HeadSW = TailNIC then

𝑠𝑡𝑎𝑡𝑢𝑠← 0
else

notify (TailNIC)
Figure 5: Reactive notification mechanism for an Ensō Pipe. It only sends
notifications when new data arrives and status = 0, or if software updates
HeadSW and it is different from TailNIC.

sizes that are too large might unnecessarily inflate latency.
Ideally, the NIC could keep track of how frequently software
is consuming notifications and try to send a notification right
before software needs the next one, with all the data that
have arrived since the last software read. Ensō approximates
this ideal approach but without the impossibility of perfectly
predicting when the next read is coming.

Instead of trying to predict when to send the next notifi-
cation, Ensō lets software dictate the pace of notifications by
sending notifications reactively. It leverages the fact that the
NIC is already aware of when the software is consuming data,
as the NIC is notified whenever software updates HeadSW
through MMIO writes. Therefore, the NIC can send notifica-
tions in response to these updates. Specifically, we allow the
actual NIC tail pointer (TailNIC) to diverge temporarily from
what is observed from software via the notification buffer.
Ensō suppresses updates to TailNIC until the NIC sees an
update to HeadSW. Our implementation uses a single status
bit for every Ensō Pipe, initialized to ‘0’, which indicates if
the buffer has data.

Operation: Figure 5 summarizes the reactive notification
mechanism. Whenever data arrive at an RX Ensō Pipe
(onPktArrival), we check the status bit, only sending a
notification if status = 0 (indicating that the buffer is empty).
We also potentially send notifications whenever software
updates HeadSW (onRxUpdate). If the new HeadSW is the
same as TailNIC, it means that the buffer is now empty and
we can reset the status back to ‘0’ without sending a new
notification. Otherwise, it indicates that software is unaware
of some of the latest data in the buffer, which triggers a new
notification.

Discussion: Reactive notifications cause the notification
rate to naturally adapt to the rate at which software is con-
suming data, as well as how fast incoming data is arriving.
When software is slow to consume data from a particular
Ensō Pipe, bytes accumulate and the NIC sends fewer notifi-
cations for that Ensō Pipe. When software is fast to consume
data, it advances the HeadSW pointer more often, causing
the NIC to send frequent notifications.

Reactive notifications ensure that every piece of data is
notified, but as we will see in §7.2.5, they can impose a small
latency overhead. This overhead occurs if packet arrivals
are known to the NIC but have not yet been communicated
in the notification buffer. In this case, when HeadSW reaches
TailNIC, software has to wait for a PCIe RTT before it is
notified of the waiting packets. While an extra PCIe RTT

is unlikely to be an issue for Internet-facing applications, it
might be an issue for some latency-sensitive applications [7].

Notification prefetching: To improve latency for latency-
sensitive applications, Ensō also implements a notification
prefetching mechanism. Notification prefetching allows soft-
ware to explicitly request a new notification to the NIC. Ap-
plications can use notification prefetching either explicitly,
by calling a function to prefetch notifications for a given
Ensō Pipe, or transparently, by compiling the Ensō library
in low-latency mode. When compiled in low-latency mode,
the library always prefetches notifications for the next Ensō
Pipe before returning data for the current one. We evaluate
the impact of using notification prefetching in §7.2.5.

5 Ensō Implementation

Our Ensō implementation consists of three pieces: a
userspace library, a kernel module, and a NIC hardware
that implements Ensō. We implement the library and kernel
module on Linux in about 9k lines of C and C++17. Our
hardware implementation uses about 10k lines of SystemVer-
ilog, excluding tests and auto-generated IPs. Our hardware
implementation targets an FPGA SmartNIC but the same
design could also be implemented in an ASIC.

5.1 Software Implementation

Applications use a library call to request notification buffers
and Ensō Pipes. Typically, applications will request a noti-
fication buffer for each thread but may use multiple Ensō
Pipes per thread, depending on their needs. The library
sends requests for new Ensō Pipes and notification buffers to
the kernel, which checks permissions, allocates them on the
NIC, and then maps them into application space. Ensō Pipes
are typically allocated in pairs of RX and TX Ensō Pipe but
may also be allocated as unified RX/TX Ensō Pipes. Unified
RX/TX Ensō Pipes map the RX and TX buffer to the same
memory region, which is useful for applications that modify
data in place and send them back, e.g., network functions.
In contrast, separate Ensō Pipes map the RX and TX buffers
to the different memory regions and are useful for typical
request-response applications.

To ensure a consistent abstraction of unbounded Ensō
Pipes we must also deal with corner cases that arise when
data wrap around the buffer limit. To prevent breaking re-
ceived data that wrap around, we map the same Ensō Pipe’s
physical address twice in the application’s virtual memory
address space. This means that, to the application, the buffer
appears to be twice its actual size, with the second half always
mirroring the first one. The application can then consume
up to the full size of the buffer of data at once, regardless
of where in the buffer the current HeadSW is. To transmit
data that wrap around the buffer limit, the library checks if
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the transfer goes around the Ensō Pipe boundary and auto-
matically partitions it into several transfers, each of which
is smaller than the overall buffer size.

5.2 Hardware Implementation
We now describe key RX and TX hardware modules.

5.2.1 RX Datapath

Figure 6 illustrates the RX datapath. It receives as input data
and metadata, which includes the Ensō Pipe ID and the size
of the corresponding data that is being enqueued. Metadata
is handled separately from the data, which allows for smaller
queues between modules. The RX datapath is composed of
the following modules:
RX Ensō Pipe Managers: The Ensō Pipe managers are
responsible for keeping Ensō Pipe state such as the buffer’s
physical address, HeadSW, TailNIC, notification buffer ID, and
notification status bit. When metadata arrive for Ensō Pipe 𝑖 ,
the manager checks for sufficient space in 𝑖 and advances 𝑖’s
TailNIC. The manager also determines whether to trigger a
notification according to the reactive notification strategy
(§4.2). To trigger a notification, the manager includes the
notification buffer ID and sets a bit in the metadata that is
sent to the Notification Buffer Manager.

We use multiple Ensō Pipe Managers for two reasons. First,
it enables flow-level parallelism. Each manager requires two
cycles to process each metadata, achieving a request rate of
125 Mpps at a 250 MHz clock. To achieve 100 Gbps line rate
(148.8 Mpps) we thus need at least two managers. Second,
multiple managers enable scaling to high Ensō Pipe counts.
We split the state for different Ensō Pipes among different
managers, allowing the logic to be closer to the memory that
it needs to access. We configure the number of Ensō Pipe
Managers at synthesis time with a default of 16, which allows
the design to meet timing for up to 16k Ensō Pipes.
RXNotification BufferManager: This module issues noti-
fications when needed. It spends one cycle for every request
and an extra cycle for those that require a notification. If we
can suppress notifications for at least 20% of requests, we
only need a single notification manager at a 250 MHz clock.
A single notification manager is also sufficient since we use
fewer notification buffers than Ensō Pipes, e.g., one notifi-
cation buffer per CPU core. Our implementation defaults to
128 notification buffers but also meets timing with 1024.
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DMA Engine: This module uses DMA to write data and
notifications to the correct address in host memory based on
the metadata computed by the upstream modules.

5.2.2 TX Datapath and Configuration Path

The TX datapath (Figure 7) is composed of:

TXNotification BufferManager: This module keeps state
for all TX notification buffers. When software enqueues a
new TX notification and advances NotificationTailSW using
an MMIO write, the manager requests a DMA read to fetch
the notification from memory. The read request is sent to
the DMA Engine, which enqueues the DMA read response
to the Notification FIFO. The manager can then consume
the notifications, allowing it to request DMA reads for the
actual data inside an Ensō Pipe. It also sends information
about each data request to the Completion Monitor module.

Completion Monitor: When the data requested by the
TX Notification Buffer Manager arrive, the DMA Engine
enqueues them to the Data FIFO. The Completion Monitor
consumes the data and keeps track of the number of bytes
pending in each request using information that it received
from the TX Notification Buffer Manager. When the request
completes, the Completion Monitor sends a TX completion
notification to the DMA Engine that writes it to host memory.
It can then output the data and the metadata, containing the
Ensō Pipe ID and size, to downstream modules on the NIC.

Configurator: Configuration notifications are enqueued
to the Configuration FIFO instead of the Notification FIFO.
These are consumed by the Configurator, which directs the
configuration to the appropriate module on the NIC. For
instance, when the kernel sets a new Ensō Pipe, it inserts an
entry in the NIC Flow Table to direct a set of packets to it.

6 Using Ensō

Ensō provides a zero-copy streaming abstraction that the NIC
and applications can use to exchange data. Thus far, we have
shown how this abstraction can be efficiently implemented.
We now discuss how Ensō should be used.

How one uses Ensō depends on how features are split
between hardware and software. We consider three settings:
(1) Traditional NICs which implement simple offloads, such
as checksum and RSS [82], and rely on software implemen-
tation for the rest. These can use Ensō Pipes to deliver raw



packets to/from a network stack implemented in software.
(2) NICs that implement transport offloads [10, 14, 77, 78]
in hardware. These can deliver application-level messages
or reassembled bytestreams through the Ensō Pipes. And
finally, (3) NICs that implement application logic [41, 49],
which can use Ensō Pipes to exchange application data. We
elaborate on each of these settings below.

Traditional NICs: For traditional NICs that perform simple
offloads such as checksum and segmentation, using Ensō is
not significantly different than using a packetized interface.
In both cases, the network stack is implemented in software
and only needs to be changed to use Ensō Pipes. Ensō is
designed to support several Ensō Pipes, and for most appli-
cations this change does not induce any additional software
overheads. Furthermore, high-performance packet process-
ing applications that process packets in order, as is the case
for most network functions [68] and applications that use
UDP, can consume and transmit raw packets through an
Ensō Pipe without copies.

However, applications such as virtual switches [32, 67],
that multiplex and demultiplex packets (but do not perform
reassembly or other functions that require re-ordering pack-
ets, where both interfaces require copies), need to perform
an additional copy when forwarding packets to their destina-
tion. As we show in §7.2.2, Ensō’s performance advantages
can outweigh the cost of copies even for such applications.

NICs with transport offload: NICs that implement
message-based transports (e.g., SCTP, Homa [60]) or
streaming-based transports (e.g., TCP) may also choose to use
Ensō Pipes to deliver messages or reassembled bytestreams
directly to the application without copies.

NICs with application logic: NICs that implement
application-layer protocols or include part of the applica-
tion logic may use Ensō Pipes to exchange application-level
messages with applications. For instance, a NIC that is aware
of both TCP and HTTP may deliver incoming HTTP requests
back to back to a web server, effectively converting the ap-
plication to a run-to-completion model.

7 Evaluation

We now evaluate our design decisions using microbench-
marks, and then use four real-world applications to show
how Ensō improves end-to-end performance.

7.1 Setup and Methodology

Device Under Test (DUT): We synthesize and run the Ensō
NIC on an Intel Stratix 10 MX FPGA NIC [42] with 100 Gb
Ethernet and a PCIe 3.0 x16 interface. Most of the NIC design
runs at 250 MHz. Our baseline uses an Intel E810 NIC [40]
with 100 Gb Ethernet and a PCIe 4.0 x16 interface, and uses

1 2 4 8
Number of cores

0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)
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Figure 8: Raw packet rate. Ensō is bottlenecked by Ethernet while the E810
does not scale beyond two cores. The dashed line represents the 100 Gb
Ethernet limit.

DPDK to minimize software overheads. All our experiments
are run on a server with an Intel Core i9-9960X CPU [38]
with 16 cores running at 3.1 GHz base frequency, 22 MB of
LLC, and PCIe 3.0. We disable dynamic frequency scaling,
hyper-threading, power management features (C-states and
P-states), and isolate CPU cores from the scheduler.
Packet generator: The packet generator machine is
equipped with an Intel Core i7-7820X CPU [37] with 8
cores running at 3.6 GHz base frequency, 11 MB of LLC, and
PCIe 3.0. It includes another Stratix 10 MX FPGA connected
back to back to the E810 and the FPGA on the DUT machine.

We found that existing high-performance packet genera-
tors such as DPDK Pktgen [85] and Moongen [24] are unable
to keep up with Ensō’s packet rate because their performance
is limited by the packetized NIC interface. We thus imple-
ment EnsōGen, a packet generator based on Ensō. EnsōGen
generates packets from a pcap file, and can send and re-
ceive arbitrary-sized packets at 100 Gbps line rate using a
single CPU core. We describe EnsōGen in more detail in
Appendix B. We use EnsōGen in all experiments except for
MICA, where we send requests from a MICA client (§7.3.3).
Methodology: We measure zero-loss throughput as defined
in RFC 2544 [11, 61] with a precision of 0.1 Gbps. We report
median throughput and error bars for one standard deviation
from ten repetitions. We measure latency by implementing
hardware timestamping on the FPGA, which achieves 5 ns
precision for packet RTTs. EnsōGen keeps a histogram with
the RTT of every received packet, which we use to com-
pute median and 99th percentile latencies. PCIe bandwidth
measurements use PCM [17] and we obtain other CPU coun-
ters using perf [65]. To evaluate MICA, we use the same
methodology as the original paper [52] for consistency.

7.2 Microbenchmarks
We start by using microbenchmarks to evaluate Ensō’s per-
formance and the design decisions we made.

7.2.1 Packet Rate

We start by measuring how fast Ensō can process packets.
We compare the performance of an Ensō-based echo server
to that of a DPDK-based echo server. On receiving a packet,
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Figure 9: Throughput when forwarding packets between two queues. Ensō
outperforms zero-copy E810 even when it needs to copy packets.

both versions increment a value in each packet’s payload and
then send the packet back out through the same interface.
We increment the payload value to ensure that all packets
are brought into the processing core’s L1d cache. For the
Ensō echo server, we use an RX/TX Ensō Pipe, which lets it
echo packets without copies.

Figure 8 compares the packet rate for Ensō and DPDK for
different numbers of cores. Even with a single core, Ensō
is bottlenecked by Ethernet, achieving 148.8 Mpps. In con-
trast, the E810 with DPDK achieves 59 Mpps with a single
core and does not scale beyond two cores, where it peaks at
88 Mpps. Beyond two cores, the experiments with the E810
are bottlenecked by PCIe bandwidth, which is insufficient for
transferring packet data and descriptor metadata (§7.2.4). As
a result, the number of packets dropped by the E810 NIC in-
creases as we increase the number of cores, and the zero-loss
throughput decreases beyond two cores.

7.2.2 Packet Forwarding with Copies

As we discussed in §3, Ensō’s streaming interface targets
applications that process received data in order. With Ensō,
applications that multiplex and demultiplex data, such as
virtual switches [32, 67], need to copy packets to forward
them to their destination. However, as we will see next, Ensō
outperforms the E810 even in this scenario.

To quantify the overhead of multiplexing and demultiplex-
ing data, we implement a simple packet forwarding applica-
tion that swaps MAC addresses and copies incoming packets
to a different TX Ensō Pipe. We compare this application
against an equivalent zero-copy DPDK implementation. Fig-
ure 9 shows the throughput when forwarding packets of
different sizes using a single CPU core. Packet copies add
overhead to Ensō, which can no longer forward 64-byte pack-
ets at 100 Gbps (148.8 Mpps). However, Ensō’s throughput
with 64-byte packets (91.7 Gbps) is still more than 2× that
achieved by the E810 with DPDK without copies (39.6 Gbps).
For other packet sizes, Ensō achieves line rate. We also eval-
uate the throughput for the same application when send-
ing packets from a CAIDA trace [13]. For this trace Ensō’s
throughput is 92.6 Gbps, compared to 72.6 Gbps for the E810
with DPDK without copies.

This result came as a surprise to us as our goal with Ensō
was never to target multiplexing/demultiplexing in software.

Ensō Chaotic Ensō E810
Throughput 100.0 Gbps 38.0 Gbps 41.1 Gbps

Rate 148.8 Mpps 56.5 Mpps 61.1 Mpps
L1d miss/total 22.8M/11,597M (0.2%) 557M/3,949M (14%) 1,357M/21,339M (6%)

L2 miss/total 2.1M/22.8M (9%) 382M/558M (68%) 747M/1,357M (55%)
LLC miss/total 541/2.1M (0.03%) 348k/382M (0.09%) 9,086/747M (0.001%)

Table 1: Effect of chaotic memory accesses on throughput and cache misses.
Results are the average of 10 runs, each lasting 10 s.

It also puts into question the usefulness of a packetized in-
terface, as its overheads can be greater than those imposed
by packet copies.

Next, we use more detailed microbenchmarks that help ex-
plain where Ensō’s performance improvement comes from.

7.2.3 Effect of Chaotic Memory Accesses on Cache

We now show that placing messages sequentially in an Ensō
Pipe is important for Ensō’s performance. As we discussed
previously, not using sequential buffers results in chaotic
memory accesses, which reduces the effectiveness of hard-
ware prefetchers (e.g., streaming prefetcher [36]). To evalu-
ate this claim, we built a modified version of Ensō, which we
call Chaotic Ensō, that changes the gaps in memory between
subsequent messages. We compute the gap deterministically
based on the message’s current position in an Ensō Pipe,
ensuring that we add no additional software overhead when
using Chaotic Ensō.

We benchmarked Ensō, Chaotic Ensō, and the E810 NIC
using a program that receives and increments packets (but
does not send them back). We measured zero-loss through-
put, and cache miss rates at this throughput.

We show the results in Table 1. Observe that Chaotic Ensō
achieves a lower throughput of 56.5 Mpps than even the E810.
The number of cache misses reveals why: despite processing
fewer packets per second (and hence having fewer cache
accesses), Chaotic Ensō has an order-of-magnitude (557 mil-
lion vs. 22.7 million) more L1d cache misses than Ensō. This,
in turn, leads to an order of magnitude (558 million vs. 22.8
million) more accesses to L2 cache, thus increasing packet
processing overheads. We also observe that the E810 has
more cache accesses than either Ensō or chaotic Ensō, this
is because it uses a descriptor per packet and thus requires
the application to read more data. Finally, we observed that
LLC misses were rare in all three configurations.

7.2.4 PCIe Bandwidth

Next, we evaluate the importance of reducing packet meta-
data by eliminating descriptors. We do so by measuring PCIe
bandwidth when using the echo server described in §7.2.1
with 64-byte packets. In what follows, PCIe writes refer to
DMA transfers from NIC to host memory, while PCIe reads
refer to DMA transfers from the host memory to the NIC.

Unlike other microbenchmarks, we do not limit ourselves
to zero-loss throughput for this experiment, and instead send
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Figure 10: PCIe bandwidth utilization for read (RD) and write (WR) trans-
actions. The bars represent the overall PCIe bandwidth utilization, while
the lines represent the goodput, i.e., the amount of PCIe bandwidth used to
transmit packet data. Ensō uses little PCIe bandwidth for metadata, causing
it to achieve a higher goodput while consuming less overall PCIe bandwidth.

packets at line rate. This ensures that software overheads do
not limit observed PCIe bandwidth, since drops due to queu-
ing do not reduce throughput. We measure PCIe bandwidth
and the rate at which the packet generator receives packets.
We use this to calculate the fraction of PCIe bandwidth used
for actual packet data (goodput).5

We report the results in Figure 10, where we show both
PCIe goodput and total PCIe bandwidth for read (RD) and
write (WR) directions. We draw four conclusions from it:

1. With one core, the E810 is CPU-bound, and the NIC
drops incoming packets because of a lack of buffers in
host memory. This reduces goodput and PCIe band-
width utilization.

2. Beyond two cores, the E810 becomes PCIe bound, and
consumes up to 84.1 Gbps of PCIe read bandwidth. This
is close to 85 Gbps, the theoretical limit for PCIe Gen3
x16 with 64-byte transfers [62].

3. Even though the E810 has a lower goodput, it consumes
more PCIe bandwidth due to metadata. This overhead
accounts for up to 39% of the PCIe read bandwidth. In
contrast Ensō’s metadata overhead remains below 1.2%.

4. Although barely noticeable in the plot, Ensō’s PCIe
write bandwidth utilization increases as we increase the
number of cores: going up from 76.4 Gbps (one core) to
77.2 Gbps (eight cores). This is because the NIC sends
reactive notifications more frequently when software
consumes packets faster.

While newer PCIe generations, including PCIe Gen 4,
have higher capacity and will no longer be a bottleneck for
100 Gbps traffic, they will continue to be a problem for NICs
that have multiple 100 Gbps interfaces and for future 400 and
500 Gbps NICs. Even with PCIe Gen 5 and a 400 Gbps NIC,
the ratio of PCIe to ethernet bandwidth remains the same as
in our setting with PCIe Gen 3.

7.2.5 Reactive Notifications and Latency

As we discussed in §4.2, Ensō is able to reduce metadata
overhead by sending notifications reactively. We measure

5The maximum goodput achievable with 64-byte packets and 100 Gb
Ethernet is 76.19 Gbps, since Ethernet adds 20 bytes of overhead per packet.
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Figure 11: RTT for different loads when using a notification per packet or
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the impact reactive notifications have on throughput and
latency, by comparing Ensō’s performance (reactive) to that
of a variant of Ensō (per-packet) that sends a notification for
each packet. We again reuse the echo server from previous
microbenchmarks for this.

Figure 11 shows the RTT (50th and 99th percentiles) as
we increase load for both cases. While reactive notifications
can sustain up to 100 Gbps of offered load, a design using
per-packet notifications can only sustain 50 Gbps. However,
reactive notifications also add latency with increased load.

We use notification prefetching to minimize latency un-
der high loads.6 When using notification prefetching, the
software explicitly sends the NIC a request for notifications
pertaining to the next Ensō Pipe, while consuming data from
the current Ensō Pipe. This effectively doubles the number
of notifications that the NIC sends to software at a high rate
but ensures that the software does not need to wait for a
PCIe RTT before processing the next Ensō Pipe.

Figure 12 shows the RTT with an increasing load for Ensō
with and without notification prefetching and for an E810
NIC with DPDK. We observe that notification prefetching sig-
nificantly reduces Ensō’s latency, and allows us to achieve la-
tency comparable to the E810, while still sustaining 100 Gbps.

7.2.6 Sensitivity Analysis

Finally, we use microbenchmarks to evaluate Ensō’s sensi-
tivity to different configuration parameters:
Impact of the number of Ensō Pipes: We measure the
impact of increasing the number of Ensō Pipes by varying the
number of active Ensō Pipes, and using a workload where
each incoming packet goes to a different Ensō Pipe. We
partition Ensō Pipes evenly across all cores. Our results in
Figure 13 show that (a) we need at least two Ensō Pipes to

6By default Ensō does not prefetch notifications. Latency-sensitive ap-
plications may enable notification prefetching at compile time.
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0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)

1 core
2 cores

4 cores
8 cores
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Figure 14: Sensitivity analysis with different numbers of cores and packet
sizes. Ensō is bottlenecked by 100 Gb Ethernet in all scenarios.

achieve line rate, since this allows us to mask notification
latency; and (b) that throughput drops when a core has more
than 32 Ensō Pipes, or eight cores have more than 512. Note
that this is a pessimal workload, and realistic workloads are
likely to perform better even with many queues [30].

Impact of packet sizes and cores: In Figure 14 we measure
the impact of varying packet size and number of cores, and
find that Ensō can always sustain full line rate, regardless of
packet size and core count.

7.3 Application Benchmarks

We now evaluate how Ensō impacts the performance of
real applications. We ported four different applications to
use both DPDK and Ensō. These applications represent
three classes of network-intensive applications (raw packets,
message-based, and streaming) that we expect to be used
with Ensō: Google’s Maglev Load Balancer [23], a network-
telemetry application based on NitroSketch [54], MICA Key
Value Store [52], and a log monitor inspired by AWS Cloud-
Watch Logs [6]. To enable a fair comparison, we use the same
processing logic for both DPDK and Ensō-based implemen-
tations, changing only the wrapper code used to send and
receive packets. Moreover, we only enable simple traditional
offloads on the NIC, e.g., RSS, Flow Director, and checksum,
for both Ensō and DPDK. We expect Ensō to perform even
better with more offloads on the NIC (§6).

7.3.1 Maglev Load Balancer

We implemented Google’s Maglev load balancer [23] as fol-
lows. We replicate the consistent-hashing algorithm pro-
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Figure 15: Packet rate for the Maglev load balancer under two types of
workloads. The dashed line is the 100 Gb Ethernet limit.

posed in the Maglev paper, caching recent flows in a flow
table, as also suggested in the paper. The load balancer ul-
timately determines a backend server for every incoming
packet, rewriting the packet’s destination IP to that of the
chosen backend server. To steer packets among different
cores, we use a hash of the 5-tuple (RSS) in both systems.
We evaluate our implementation using two extreme types
of workloads: one with only 16 flows, which means that
packets always hit the flow cache; and another with a SYN
flood, which means that packets always miss the flow cache.
In both cases, we use small 64-byte packets as Maglev is mo-
tivated by the need to load balance small requests [23, §3.2].
For Ensō, we use unified RX/TX Ensō Pipes to avoid copying
the packet when forwarding it back.

Figure 15 shows the packet rate with both the E810 NIC us-
ing DPDK and Ensō as we scale the number of cores. With a
single core and the cached workload, Ensō achieves a packet
rate of 138 Mpps, approximately 6× the 23 Mpps achieved
by the E810. With the SYN flood workload, Ensō achieves
79 Mpps, approximately 5× the 16 Mpps achieved by the
E810.7 With four cores, Ensō becomes bottlenecked by Eth-
ernet for both workloads; and with eight cores, the DPDK
implementation becomes bottlenecked by PCIe (§7.2.4).

7.3.2 Network Telemetry

Sketching algorithms are popular primitives for many net-
work telemetry tasks (e.g., heavy-hitter detection, flow count
estimation) because of their small memory footprint and the-
oretical accuracy guarantees. NitroSketch [54] is a sketching
framework that enables software sketches to achieve high
performance on commodity servers without sacrificing accu-
racy. To evaluate this class of applications, we implemented
a Count-Min Sketch (CMS) using the NitroSketch framework
and Ensō. As in Maglev, we use unified RX/TX Ensō Pipes.

We benchmarked our implementation using two work-
loads: 64B packets (emulating the stress-test performed
in [54]), and a busy period sampled from the 2016 CAIDA
Equinix 10G dataset [13], with an average packet size of 462B.

7We note that DPDK’s packet rate of 16 Mpps with a single core is in fact a
good packet rate for DPDK. For instance, NetBricks’ Maglev implementation
achieves 9.2 Mpps with a single core [64]. We attribute the improvement in
our DPDK numbers to NetBricks’ unoptimized implementation and our use
of a newer CPU with better single-thread performance.
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E810

Figure 17: Mean RTT for MICA as a
function of offered load (1 core).
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Figure 19: Log monitor throughput
for different target applications.

With a single core, Ensō sustains a zero-loss throughput of
81.5 Gbps (121 Mpps), approximately 3.5× that achieved by
the E810 (22.8 Gbps or 33.9 Mpps) on 64B packets. On the
CAIDA trace, Ensō achieves 94.9 Gbps, a 21% improvement
over the E810 (78.3 Gbps); the application remains compute-
bound in this setting, but Ensō shrinks the fraction of time
spent performing network I/O, which improves performance.

7.3.3 MICA Key-Value Store

MICA [52] is a state-of-the-art key-value (KV) store which is
also a popular benchmark in the literature [34,46,47,51,69,79].
Different from Maglev and the Network Telemetry applica-
tion, that operate on raw packets and forward them back with
modifications, MICA represents a typical message-based ap-
plication whose responses must be constructed separately
from the incoming request. Also different from these ap-
plications, latency is typically more critical for key-value
stores [7]. MICA also entails significantly more work per
packet (in terms of both compute and memory accesses) and
is, therefore, less likely to become network-bound.

For the following experiments, we set the size for both
keys and values to 8B (corresponding to the ‘tiny’ configura-
tion in [52]). We report results for operations skewed 50%
towards GET requests and with a uniform distribution of key
popularity, but these generalize to other configurations as
well. We use the same throughput metric as described in [52]
(tolerating <1% loss at the NIC), and the same methodology
for measuring end-to-end latency (the client tags each re-
quest with an 8B timestamp, then computes latency based
on the arrival time of the corresponding response).

Figure 16 shows the steady-state throughput in millions
of operations per second (Mops) achieved by MICA for both
E810 with DPDK and Ensō for different numbers of cores.
With a single core, Ensō achieves 7.65 Mops, a 31% improve-
ment over the E810.8 While this might seem modest at first
(compared to the 6× speedup on Maglev), note that MICA is
significantly more compute- and memory-intensive than Ma-
glev. Thus, while DPDK adds considerable CPU overhead, it
corresponds to a smaller fraction of the overall compute time.

8For consistency, all the MICA experiments use the original, unmodified
MICA client implemented with DPDK. We observe even better perfor-
mance when using a MICA client ported to Ensō (up to 47% improvement
in throughput).

With 2 and 4 cores, we see throughput speedups of 33% and
23%, respectively. At 8 cores, the bottleneck moves to a dif-
ferent part of the system (i.e., memory). We report numbers
for the ‘tiny’ configuration since it represents a significant
fraction of requests found in real workloads [4, 57], while
also being the most challenging workload for MICA. We also
tested other configurations with larger keys and values, ob-
taining up to 29% improvement for the ‘small’ workload (16B
keys and 64B values) and up to 12% for the ‘large’ workload
(128B keys and 1024B values).

We also evaluate latency, plotting the average request
latency as a function of the offered load when using a server
with a single core (Figure 17) or four cores (Figure 18). For
both configurations, we find that Ensō outperforms the E810
in terms of both throughput and latency. With a single core,
Ensō reduces latency by up to 8 µs (43% reduction) before the
queues start to build up and, with four cores, Ensō reduces
latency by up to 6 µs (36% reduction).

7.3.4 Log Monitor

To understand Ensō’s effect on streaming applications, we
implemented a log monitor. The log monitor is inspired by
AWS CloudWatch Logs [6], which lets users centralize logs
from different hosts and craft queries to look for specific
patterns and raise alarms. Like, AWS CloudWatch Logs In-
sights [5], the log monitor also supports Hyperscan [84] to
search for multiple regular expressions. We use Hyperscan in
streaming mode for both Ensō and DPDK implementations.
To feed the system, we use MTU-sized packets, carrying sys-
tem logs extracted from long-running Linux hosts. We also
configured the log monitor to look for regular expressions
extracted from Fail2ban [45]. We run experiments target-
ing each of the ten most popular applications supported by
Fail2ban according to the Debian package statistics [16].

Figure 19 shows the throughput we achieve when target-
ing each of the ten applications. Performance is dictated
primarily by the number and complexity of the regular ex-
pressions that are required by each target. Ensō’s throughput
is higher across all targets but the gap is more noticeable for
those with simpler or fewer regular expressions, with almost
double the throughput when targeting postfix, selinux,
or sieve. The reasons for Ensō’s improvement in perfor-
mance are twofold: First, Hyperscan performs better when



larger chunks of data are handed to it at once. With Ensō, we
can invoke Hyperscan with large chunks of contiguous logs
delivered from the NIC but with DPDK we need to invoke
Hyperscan for every DPDK mbuf. Second, as demonstrated
in §7.2.3, Ensō’s memory access patterns are sequential, mak-
ing better use of the CPU prefetcher.

8 Related Work

Direct application access: While giving applications direct
access to the NIC has been a common theme of research for
more than three decades [8, 22, 26, 33, 50, 66, 73, 75, 80, 87, 88],
most work accepts the NIC interface as a given and instead
look at how to optimize the software interface exposed to ap-
plications. A notable exception is Application Device Chan-
nels [22], which gives control of the NIC to the kernel while
giving applications independent access to different queues.
We take inspiration from it in the way that we allow multiple
applications to share the same NIC.

Alternative NIC interfaces: There are also proposals that
try to address some of the performance and abstraction issues
that we highlighted for the packetized interface.

In terms of performance, Nvidia MLX 5 NICs [20] provide a
feature named Multi-Packet Receive Queue (MPRQ) that can
potentially reduce PCIe RD bandwidth utilization with meta-
data by allowing software to post multiple packet buffers
at once. However, this is not enough to completely avoid
PCIe bottlenecks as the NIC still needs to notify the arrival
of every packet, consuming PCIe WR bandwidth. Another
proposed change to the NIC interface is Batched RxList [70].
This design aggregates multiple packets in the same buffer
as a way to allow descriptor ring buffers to be shared more
efficiently by multiple threads, which in turn could help them
avoid the leaky DMA problem [81].

In terms of abstraction, U-Net [83] and, more recently,
NICA [27] allow the NIC to exchange application-level mes-
sages directly. U-Net proposes a communication abstraction
that resembles part of what is now libibverbs (RDMA) [53]
and NICA uses a similar mechanism named “custom rings.”
However, similar to the packetized interface, both U-Net
and NICA use descriptors and scattered buffers and, as such,
inherit its performance limitations.

Application-specific hardware optimizations: Prior
work has optimized the NIC for specific applications.
FlexNIC [49] quantifies the benefits that custom NIC inter-
faces could have to different applications. NIQ [29] imple-
ments a mechanism to reduce latency for minimum-sized
packets by using MMIO writes to transmit these packets.
It also favors MMIO reads over DMA writes for notifying
incoming packets. NIQ’s reliance on MMIO means that it
is mostly useful for applications that are willing to vastly
sacrifice throughput and CPU cycles to improve latency. nm-

NFV [69] stores packet payloads on NIC memory, sending
only the packet headers inlined inside descriptors, which is
useful for network functions that only need to modify the
header. This is orthogonal to Ensō’s interface changes and
could also be used in conjunction with it.

Application-specific software optimizations: Some pro-
posals avoid part of the overheads of existing NICs with
application-specific optimizations in software. TinyNF [68]
is a userspace driver optimized for network functions (NFs).
It relies on the fact that NFs typically retransmit the same
packet after processing. It keeps the set of buffers in the RX
and TX descriptor rings fixed, reducing buffer management
overheads. eRPC [46] is an RPC framework that employs
many RPC-specific optimizations. For instance, it reduces
transmission overheads by ignoring completion notifications
from the NIC, instead relying on RPC responses as a proxy for
completions. FaRM [21] is a distributed memory implemen-
tation. It uses one-sided RDMA to implement a message ring
buffer data structure that has some similarities to an Ensō
Pipe. However, different from an Ensō Pipe, FaRM’s message
buffer is not opaque (enforcing a specific message scheme),
must be exclusive to every sender, and lacks a separate noti-
fication queue (requiring the receiver to fill the buffer with
zeros and to probe every buffer for new messages).

9 Conclusion

Ensō provides a new streaming abstraction for communica-
tion between software and NICs. It is better suited to modern
NICs with offloads and improves throughput by up to 6×
by being more cache- and prefetch-friendly and by reducing
the amount of metadata transferred over the IO bus. While
this paper focused on using Ensō for NIC-to-software com-
munication, we believe that a similar approach might also
apply to other I/O devices and accelerators, and we hope to
explore this in future work.
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Appendix A Rejected Designs for Pointer
Updates

Unfortunately, the simplest alternatives for communicating
pointer updates from the NIC to software perform poorly.
We considered three potential alternative designs to let the
NIC inform pointer updates to software. While these designs
might seem to suit our needs at first, we ultimately discarded
them since they perform poorly due to architectural details
of PCIe or the CPU:
MMIO synchronization: The simplest design would be for
the NIC to update the pointer values to its internal memory
and make software periodically issue an MMIO read to fetch
the latest value. Unfortunately, software-issued MMIO reads
cannot be served from the cache, causing the CPU core to
stall until the read request is sent and the response is received
(two PCIe transfers). Additionally, PCIe serializes MMIO
reads, further reducing performance.
Shared memory synchronization: A second simple al-
ternative would be to dedicate an address in host memory
to hold the pointer value. The NIC can issue a DMA write
whenever it needs to update the pointer value. Software
can then periodically poll the same address to figure out if
the NIC advanced the pointer. The issue with this design
is that it makes the software and the NIC contend for the
same cache line, which requires a slow ownership transfer
whenever the NIC or the CPU access the cache line. To verify
this, we implemented this design and obtained a throughput
of less than 5 Gbps when enqueueing 64-byte packets using
the same setup as described in §7.
Inline synchronization: The last discarded design is moti-
vated by traditional NIC descriptor ring buffers which con-
tain constant-sized descriptors with metadata in a format
defined by the NIC. These designs designate a bit of the
descriptor as a “flag bit” [25, 39]. Initially, all the descrip-
tor slots in the buffer have their flag bit zeroed. Whenever
the NIC DMA writes a new descriptor to host memory, it
overwrites the old ‘0’ flag with a ‘1’ flag. To figure out if
a new descriptor is ready to be consumed, software simply
needs to check if the next slot’s flag is set. After consuming
a descriptor, software sets the flag back to ‘0.’ Because many
descriptors are likely to be present in the buffer, this reduces
the chance that software and the NIC will contend for the
same cache line.

Since Ensō Pipes are opaque, implementing the same strat-
egy used in the descriptor ring buffer is impossible. Even
if we zeroed the entire buffer after the data is consumed,
we do not know what data to expect in the buffer—the next
incoming data might also be zero. Therefore we tested an
alternative design: we picked a 128-bit random cookie, to
make the chance of collision with incoming data negligible
and placed it at the beginning of every cache line of the Ensō
Pipe. Software now only needs to check if the next 128 bits

match the cookie. Unfortunately, filling the buffer with cook-
ies whenever the data is consumed imposes considerable
overhead. For this reason, this design worked well for small
data transfers but poorly when using large chunks of data.
This design also prevents software from detecting unaligned
writes.

Appendix B EnsōGen Packet Generator

EnsōGen is a software packet generator built on top of the
Ensō NIC interface that achieves 100 Gbps with a single core
and arbitrary packet sizes. Here we briefly describe how it
operates and how we ensure that it is correct.
Operation: At startup EnsōGen reads a user-supplied pcap
file and allocates enough Ensō Pipes to be able to fit all its
packets. At run time, EnsōGen simply needs to round-robing
among the pre-allocated Ensō Pipes enqueueing a single no-
tification in order to transmit the entire 2 MB buffer con-
tent. This makes it trivial for EnsōGen to saturate the link
with very little CPU overhead. Since transmission is cheap,
EnsōGen spends most of its CPU cycles receiving packets. It
parses every incoming packet to track the number of bytes
and packets received.
Simple offloads: We implemented hardware support
for timestamping and rate limiting, which helps EnsōGen
achieve cycle-accurate precision while saving CPU cy-
cles. These features are also commonly offered in existing
NICs [39, 63] and are leveraged by some software packet
generators [24]. When hardware timestamping is enabled,
EnsōGen keeps a histogram in host memory with the RTT
of every received packet with 5 ns granularity (the same
precision as the hardware timestamper, which operates at
200 MHz). To spread the load equally among the RX Ensō
Pipes regardless of the workload, EnsōGen also configures
the hardware to direct packets to pipes in a round-robin
fashion [74].
Correctness: We verified EnsōGen’s performance and rate-
limiting capabilities using another in-house packet generator
fully implemented on an FPGA, as well as using software
counters, to ensure that the rate limited throughput always
matches the specification.



Artifact Appendix

Abstract
The paper artifact is composed of Ensō’s hardware and soft-
ware implementations, the applications used in the evalua-
tion, the EnsōGen packet generator, as well as the code to
automatically run most of the experiments. We also include
documentation describing how to set up the environment,
compile the code, synthesize the hardware, and use Ensō
for other purposes—including a detailed description of the
software API.

Scope
The artifact has two main goals: The first is to allow the
main claims in the paper to be validated. The second is to
allow others to build upon Ensō for their own projects.

We include code to automatically reproduce Figures 8, 11,
12, 13, 14, and 15. We also include the source code for all the
applications that we evaluate in §7.3 and for the EnsōGen
packet generator.

Contents
The artifact is split between two git repositories.

Ensō Repository

This repository includes Ensō’s source code as well as doc-
umentation and example applications. It is structured as
follows:
hardware/: Source code for the hardware component and
scripts to automatically generate all the required IPs.
software/: Source code for the software component,
which includes both the library and the kernel module.
It also includes example applications and EnsōGen under
software/examples.
frontend/: Frontend to programmatically load and config-
ure the hardware from Python as well as a command line
interface based on this frontend.
docs/: Documentation detailing how to set up the system,
compile the software and the hardware, and how to use
Ensō’s primitives (RX Pipes, TX Pipes, and RX/TX Pipes)
from an application.

Ensō Evaluation Repository

This repository includes code to automatically run experi-
ments to verify the main claims in the paper and the applica-

tions that we evaluate in §7.3. Here we briefly describe the
main files and directories:
experiment.py: Script to automatically run the experi-
ments to verify the main claims in the paper.

paper_plots.py: Script to produce all the plots in the paper.

setup.sh: Script to automatically setup the experiment
environment.

maglev/: Maglev Load Balancer used in §7.3.1.

nitrosketch/: Network telemetry application based on
NitroSketch used in §7.3.2.

mica2/: MICA Key-Value store used in §7.3.3.

log_monitor/: Log monitor application used in §7.3.4.

Hosting

Both repositories are hosted on GitHub and archived using
Zenodo with a permanent DOI. The documentation con-
tained in the Ensō Repository is also automatically deployed
using GitHub actions for easy access.

Ensō Repository

• Repository: https://github.com/crossroadsfpga/enso
• Commit: 093dca77836fbe10409af7f0ec3b28232fc25f44
• Zenodo Archive: https://zenodo.org/record/7860872
• DOI: https://doi.org/10.5281/zenodo.7860872

Ensō Evaluation Repository

• Repository: https://github.com/crossroadsfpga/enso_eval
• Commit: 1a100cb38577930b9124fc6fefced3f0a6da7da4
• Zenodo Archive: https://zenodo.org/record/7860936
• DOI: https://doi.org/10.5281/zenodo.7860936

Ensō Documentation

• Link: https://enso.cs.cmu.edu

Requirements

Running Ensō requires a host equipped with an Intel
Stratix 10 MX FPGA [42] and an x86-64 CPU. The software
component also assumes that the host is running Linux. §7
details the exact environment we used in our experiments.
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