
Achieving Consistent Low Latency forWireless
Real-Time Communications with the Shortest Control Loop

Zili Meng1,2, Yaning Guo1, Chen Sun2, BoWang1,
Justine Sherry3, Hongqiang Harry Liu2, Mingwei Xu1,4

1Tsinghua University 2Alibaba Group 3Carnegie Mellon University 4Zhongguancun Laboratory
zilim@ieee.org, gyn17@tsinghua.org.cn, qichen.sc@alibaba-inc.com, wangbo2019@tsinghua.edu.cn

sherry@cs.cmu.edu, hongqiang.liu@alibaba-inc.com, xumw@tsinghua.edu.cn

Abstract
Real-time communication (RTC) applications like video conferenc-
ing or cloud gaming require consistent low latency to provide a
seamless interactive experience. However, wireless networks in-
cluding WiFi and cellular, albeit providing a satisfactory median
latency, drastically degrade at the tail due to frequent and substantial
wireless bandwidth fluctuations. We observe that the control loop
for the sending rate of RTC applications is inflated when congestion
happens at the wireless access point (AP), resulting in untimely rate
adaption to wireless dynamics. Existing solutions, however, suffer
from the inflated control loop and fail to quickly adapt to bandwidth
fluctuations. In this paper, we propose Zhuge, a pure wireless AP
based solution that reduces the control loop of RTC applications by
separating congestion feedback from congested queues. We design a
FortuneTeller to precisely estimate per-packetwireless latencyupon
its arrival at the wireless AP. To make Zhuge deployable at scale, we
also design a Feedback Updater that translates the estimated latency
to comprehensible feedback messages for various protocols and
immediately delivers them back to senders for rate adaption. Trace-
driven and real-world evaluation shows thatZhuge reduces the ratio
of large tail latency andRTCperformance degradation by 17% to 95%.

CCS Concepts
•Networks→Routers;Wireless access networks.

Keywords
Real-time communications, congestion control, wireless network.
ACMReference Format:
ZiliMeng, YaningGuo,Chen Sun, BoWang, Justine Sherry,HongqiangHarry
Liu, Mingwei Xu. 2022. Achieving Consistent Low Latency forWireless Real-
Time Communications with the Shortest Control Loop. InACM SIGCOMM
2022 Conference (SIGCOMM ’22), August 22–26, 2022, Amsterdam, Netherlands.
ACM,NewYork,NY,USA, 14 pages. https://doi.org/10.1145/3544216.3544225

1 Introduction
Real-time communication (RTC) applications like video conferenc-
ing [17, 47], cloud PC [42], and cloud gaming [8] are now prevalent

Zili, Yaning, Bo, andMingwei are with Institute of Network Sciences and Cyberspace,
also with Beijing National Research Center for Information Science and Technology.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544225

(i) Downlink queue (ii) Downlink
wireless

(iii) Uplink
wireless(iv) Uplink queue(v) Uplink

WANReaction
Point

Congestion
Point

Reflection
Point

Sender ReceiverLast-mile
access point

Figure 1: Control loop for rate adaption at the wireless last mile.
Compared with existing solutions, Zhuge bypasses the segment (i) - (iii)
to achieve the shortest control loop.

in business and daily life. To provide a satisfactory user’s experience,
RTC applications require consistent low latency, even at the tail.
For example, video conferencing demands consistent latency below
150ms [38], and cloud gaming demands under 96ms [39]. However,
our analysis of a large-scale online live streaming platformwith mil-
lions of daily active users (§2) shows that themedian RTT ofwireless
users today is below 100ms (comparable to that of Ethernet users),
but the 99th percentile tail latency is ∼ 400ms. Intuitively, latency
spikes at the 99th percentile indicate that RTC application users can
experience one delayed video frame per every 100 frames (i.e. once
every 5 seconds for a 20fps stream), which severely compromises
user experience. Following this intuition, our measurements of the
same system reveal that wireless users (includingWiFi and cellular)
encounter 2×more video rebuffering than Ethernet users.
Transient congestion at wireless links is caused when available

bandwidth for a user drops suddenly, e.g., due to multi-user access
and mutual interference. Available bandwidth of wireless networks
can drop by 10× at the 99th percentile (§2.3). After such a sudden
drop, packets quickly begin toqueue at theAP, increasing end-to-end
latency. Ideally, senders would react quickly when bandwidth reduc-
tion occurs, e.g., by reducing their bitrate to prevent queue buildup,
high latency, and loss. Unfortunately, we observe that senders are
fundamentally limited inhowquickly theycanreact, and it isprecisely
when queues build up that senders react most slowly!

The problem is that congestion signals are carried along the same
congested path as data packets. Put simply, to observe that the bottle-
neck queue is filling, a sendermust first receive an acknowledgement
from a packet that has actuallywaited in that queue. Hence, conges-
tion indicators like timestamps or losses take longer to reach the
sender when the sender most needs these indicators. In Figure 1,
we show the route taken both by data packets and the control sig-
nals they carry, in-band/explicitly (such as timestamps) or out-of-
band/implicitly (such as their RTT).
Our key insight in this paper is that we can decouple the control

loop from the full path that data packets traverse, hence protecting
control signals from experiencing the full latency of filling, often
buffer-bloated [60] queues. A carefully designed AP, on observing

https://doi.org/10.1145/3544216.3544225
https://doi.org/10.1145/3544216.3544225

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

a filling downlink queue (i in Figure 1) can modify or delay packets
in the uplink queue (iv in Figure 1), allowing congestion signals to
reach the sender without the delay of the congested bottleneck.
Substantial research literature aims to improve network latency

for wireless networks, but these approaches primarily succeed at
improvingmedian rather than tail latencies of RTC applications in
the wireless network. We argue that the problem primarily stems
from the fact that all of these approaches rely on a delayed control
loop due to congestion signals needing to traverse the congested,
high-latency path. For example, end-based solutions such as con-
gestion control algorithms (CCAs) collect end-to-end signals (e.g.,
per-packet delays) at the sender to adjust the sending rate. However,
one (inflated) control loop is still needed to collect the signals af-
ter sending a packet. Similarly, in-network solutions such as active
queue management (AQM) create signals (e.g., packet drops) but
these signals still have to be bounced by the receiver to the sender,
which, again, suffers a long control loop.

While our key insight is straightforward, implementing it success-
fully in practice is challenging:
How can an AP predict packet latency for packets which have not yet
been transmitted? Naïvely, an APmight simply measure the number
of bytes queued in the downlink queue and divide by the available
link capacity to measure a queuing delay. However, recall that link
bandwidth is fluctuating (hence our problem) and so such an esti-
mator is likely to be inaccurate.
Howshould theAP report themessage back to the sender in a deployable
way? Astraightforward solution is enabling routers to directly trans-
mit newly defined messages back to senders (e.g., XCP [41] or active
network [25]). However, coordinating AP and senders that are usu-
ally maintained by different entities (§2.3) builds barriers for deploy-
ment at scale.Moreover, for existingdeployedprotocols at the sender,
some use explicit signaling (e.g., timestamps) while others use im-
plicit or out-of-band signaling (e.g., the RTT or RTT gradient). Some
protocols react to a weighted moving average of the RTT [18]; some
protocols are concernedwithminimumRTT values over a particular
window [12]; and some protocols react to inter-packet timings and
are not concernedwith RTT at all [19]. The APmust modify or delay
upstreampackets in away that faithfully captures all of these factors,
so that neither the sender nor the receiver requires modification.
Addressing these challenges, this paper presents Zhuge1 that

achieves consistent low latency2 in wireless environments by min-
imizing the control loop. Zhuge includes a ‘Fortune Teller’ module
that, on packet arrival at the downstream queue, makes a prediction
as to that packet’s delay to the receiver and back to the AP. The
Fortune Teller separately estimates two factors influencing queuing
delay (§4.1) and uses these to derive a combined prediction for every
arriving packet. The second component of Zhuge is a ‘Feedback
Updater’ which modifies upstream packets. Depending on the pro-
tocol, these modifications are based on either the raw packet delays
recorded by the Fortune Teller, or differences of packet delays (details
in §5.2) derived from the Fortune Teller.

We have implemented Zhuge in both simulation and with aWiFi-
router based testbed (§7). Evaluation resultswith real-worldwireless
1Zhuge is a famous fortune-teller in ancient China.
2Wemainly focus on recent CCAs that are designed to maintain a low latency, but fail
to consistently achieve a low latency. Buffer-filling CCAs that suffer from a high RTT
all the time (e.g., CUBIC [32]) are not our target.

Narayanan et al.
(2020) [51]

Tail latency of the 5G hop does not improve
against 4G, and could be around 200ms.

Daldoul et al.
(2020) [22]

802.11ax (a.k.a. WiFi 6) has an averageWiFi-hop
latency of >30ms with 30 interferers.

Bhartia et al.
(2017) [15]

More than one quarter of 802.11ac access points
sufferfrom a latency of >100ms at the last hop.

Ghoshal et al.
(2022) [30]

Maximum latency does not improve much for
median users between 5GmmWave and 4G LTE.

Table 1: Recent measurement results of the wireless network latency.

0 . 0 0 . 4 0 . 8 1 . 2 1 . 61 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0

1 -
CD

F

R T T (s e c)

W i F i4 GE t h e r n e t

0 . 0 0 . 4 0 . 8 1 . 2 1 . 61 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 -
CD

F

F r a m e D e l a y (s e c)

W i F i4 GE t h e r n e t

1 0 8 6 4 21 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1

1 -
CD

F

F r a m e R a t e (f p s)

W i F i4 GE t h e r n e t

Figure 2: Comparison of RTT and video transmission quality ofWiFi,
4G, and Ethernet according to data from a large-scale online RTC
applicationwith O(1M) users every day. Frame delay refers to the
delay measured at the application layer.

traces and configurations for bothWiFi and cellular show thatZhuge
improves key metrics on network conditions (e.g., tail latency) and
application performance (e.g., video frame delay) by 17% to 95%. Fur-
ther evaluation also shows that Zhuge is able to achieve satisfactory
performance in the real world in different scenarios.

2 Background andMotivation
In this section,weuse real-world statistics to reveal the status ofwire-
less tail latency (§2.1). Next, we analyze why existing solutions fail
to achieve consistent low latency (§2.2). Finally, we present our mo-
tivation of reducing the control loop to ameliorate tail latency (§2.3).
2.1 UnderstandingWireless Tail Latency
We first answer the following two questions:
Why is the tail latency critical for RTC applications in wire-
less networks? Recent booming RTC applications not only require
low latency in the median, but also demand consistent low latency
at the tail. For example, suppose that most of the time, wireless users
could experience a satisfactory RTT of <100ms. However, if the 99th
percentile networkRTT is>400ms, thenetwork latencywould far ex-
ceed the delay budget of applications [46, 50]. In this case, one frame
out of 100 may suffer high latency, severely degrading user experi-
ence. Therefore, reducing tail latency is critical for RTC applications.

However, current wireless access network performance is not sat-
isfactory at the tail.Weback this argumentwith several observations.
First, existing literature unveils the long tail latency even with ad-
vanced access technologies. We summarize measurement results in
recent years in Table 1. EvenwithWiFi 6 (802.11ax) or 5G (mmWave),
wireless networks still do not performwell. This is consistent with
our investigation of content providers. “When experiencing net-
work issues, plug your computer into a wired Ethernet connection if
possible”, stated in the guide of a cloud gaming provider [8]. Latency-
sensitive applications turnout to prefer inconvenient but stable cable
networks due to the high tail latency of wireless networks.
In addition, our ownmeasurement results of an online real-time

communication service, which serves millions of users every day
(measurementmethodology inAppendixA), also revealdegraded tail
performance in wireless networks. We present the measurements

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

𝜏
control loop

txRate
reduced

by 𝑘×

𝑘𝜏
time to drain the

excessively sent packets

Se
nd

in
g

Ra
te

Time

rxRate
(sender-controlled)

(a) The bottleneck queue building up and
draining after ABW reduction.

1 x 2 x 5 x 1 0 x 2 0 x 5 0 x0 %
5 0 %
9 0 %9 5 %
9 8 %9 9 %

9 9 . 9 %
A B C (4 g)I n d o o r (4 g / 5 g)C i t y (4 g)C i t y (5 g)O f f i c e (w i f i)R e s t . (w i f i)O f f i c e (e t h)

CD
F

t x R a t e R e d u c t i o n
(b) Distribution of wireless available
bandwidth reduction ratio.

Figure 3: The sudden drop of available bandwidth (ABW) could lead to
transient increases of latency. Solid lines in Figure 3(b) are from open
datasets [31, 49, 62] and dashed lines are measured on our testbed. ABW
is the average value measured in a window of 200ms. Details in §7.2.

of network conditions and application performance of Ethernet,
WiFi, and 4G access networks. As shown in Figure 2, most of the
time, wireless networks could provide a satisfactory RTT of <100ms.
However, the 99th percentile RTT for wireless networks is as high as
>400ms, which far exceeds the network latency budget for applica-
tions [46, 50]. The application-layer metrics also expose similar pat-
terns:wireless users encounter 2×more video lags (long framedelay)
thanEthernet users. Furthermore, the ratio of frame rate drops (video
stalls) ofwireless networks is 10×higher than that ofwirednetworks.
Whydoeswireless latencyfluctuate at the tail?The outstanding
tail latency is caused by the transient mismatch of sending rate at
the sender and available bandwidth (ABW) at the bottleneck queue.
We illustrate the transient mismatch from the view of the bottleneck
queue in Figure 3(a). When the ABW of one RTC flow suddenly
drops by 𝑘× at the bottleneck router (the solid blue line), it takes
one control loop 𝜏 for the CCA to reduce its sending rate (the green
dashed line). During this period, the bottleneck queue still receives
packets from the sender at its original sending rate. Thus, the queue
builds up due to these excessive packets, as shown in the red shadow.

The duration of congestion is further amplified since it takesmuch
longer to drain those excessively sent packets from the queue. Specif-
ically, the packets that arrived at the bottleneck queue during the
control loop 𝜏 would need 𝑘𝜏 in total to be sent out. During this
period, all packets sent out would experience an increased latency,
degrading the user’s experience.
Therefore, the transient increase of latency depends on (i) how

violent theABWfluctuates (𝑘), and (ii) howsoon the sender reacts (𝜏).
As for the ABW fluctuation 𝑘 , wireless channels are naturally more
fluctuating thanwired channels due to their variability.We calculate
the available bandwidth every 200ms, during when the CCA should
respond to suchfluctuations, considering theRTT. from several open
datasets and also our ownmeasurements in the office and restaurant
(details in §7.2). As shown in Figure 3(b), for all wireless datasets
including 5GmmWave and 5GHz-bandWiFi, 0.6-7.3% of ABW re-
duction rates are above 10×, which is much higher than the <0.1% of
wired networks. As for the control loop 𝜏 , in most cases, the conges-
tion controller needs one RTT to adjust the sending rate upon receiv-
ing the congestion signals (e.g., increased delay, packet losses).When
the bottleneck queue starts to build up, the end-to-end RTT also in-
flates, further preventing the congestion signals from reaching the
sender. Consequently, the end-to-end latencywill fluctuate at the tail.
2.2 Existing Solutions
The reduction of ABW (𝑘) is due to contention in the link layer and
below [40] and is unavoidable in most time (e.g., due to wireless

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 2
0 . 51

2
5

1 0

Du
rat

ion
 (se

c)

t x R a t e R e d u c t i o n (k)

C o l o r : C u b i cB b rC o p aG c c L i n e s t y l e :F I F OC o D e l
(a) RTT degradation.

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 2
0 . 51

2
5

1 0

Du
rat

ion
 (se

c)

t x R a t e R e d u c t i o n (k)

C o l o r : C u b i cB b rC o p aG c c L i n e s t y l e :F I F OC o D e l
(b) CWND (sending rate) reduction.

Figure 4: The convergence duration after wireless bandwidth drop for
different CCAs and AQMs. RTT degradation duration is the time when RTT
> 200ms. CWND rate reduction duration is the time for CCA re-convergence.

interference). Many transport layer innovations have been proposed
to improve the steady state median latency of a connection. For
example, BBR [18] moves the working point of congestion control
froma full queue inCUBIC [32] to an empty queue. CoDel [52] queue
management also tries to shorten the queue in the steady state in
a variety of network conditions compared with FIFO. Subsequent
research efforts (including congestion control [12, 19, 24] and ac-
tive queue management [34]) further provide insightful thoughts
of maintaining the optimal working point with different feedback
signals. Standing on the shoulders of giants, the median latency for
applications can be nicely controlled. However, they are insufficient
to reduce the tail latency, which we will analyze below.
End host-based solutions. For network layer and above, existing
end host-based solutions fail to quickly adapt to the ABW reduction
due to their long and inflated control loops. Recalling Figure 1, when
the green shaded packet arrives at the congestion point and observes
a long queue, it first needs to go through the queue (i), transmitted
to the receiver (ii), the corresponding feedback delivered from the
receiver to the access point (iii), and finally sent to the sender (iv
and v). Since the shortest time for the sender to be notified is one
full control loop including segments (i)-(v), a pure end host-based
CCA cannot timely adapt to transient bandwidth fluctuation. We
further simulate the performance of recent latency-sensitive CCAs
(BBR [18], Copa [12], and GCC [19]) together with AQMs in Figure 4.
When the ABW is reduced by 10× or more, all these algorithms,
working with or without latency-aware AQMs, suffer from seconds
of RTT degradation. The inflated control loop for end host-based
solutions results in severe wireless queuing.
In-network solutions. Solutions modifying in-network devices
also fail to timely feed back these signals. For example, AQM such
as CoDel [52] drops the packets in the front of the queue to reduce
the downlink queuing latency (i) in Figure 1, yet still suffers long
wireless latency (ii) and (iii), which could be more than 100ms [15].
Moreover, AQMs are mostly designed to drop some packets, while
manymodern CCAs are designed to be responsive to the increase
of packet delay and insensitive to packet drops [12, 18, 19]. This can
also be validated in Figure 4(a): CoDel can hardly improve the per-
formance of delay-based CCAs such as Copa. There are also a line of
solutions to co-design the hosts and in-network routers for decades
to achieve better feedback from the network, including XCP [41],
RCP [58], Kickass [26], and ABC [31]. However, their design goals
are getting a precise estimation of network conditions from routers,
while the gathered information still needs to go through the full con-
trol loop.We also compare the performance of Zhuge againstABC to
demonstrate the potential room for improvements with host-router

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

co-design and our further improvements in §7.
2.3 Our Proposal: Reducing the Control Loop
Our key insight to reduce wireless tail latency is to separate the
congestion feedback from the congestion by sensing the network
conditions as early as possible, timely carrying the conditions back
to the sender tominimize the control loop, and performing the above
operations in a deployable way.
Theearliest signal–onepacketknows its fortuneuponarrival.
In most cases, when one packet arrives at the bottleneck queue, it
can predict its delay with visibility of the entire queue. For example,
the queuing delay for the packet could be roughly estimated by divid-
ing the queue length with the dequeuing rate. Therefore, when the
dequeuing rate decreases, we can observe increasing queuing delay
upon the arrival of subsequent packets. Compared with other conse-
quent signals such as the packet loss or the measured queuing delay,
the estimated queuing delay is the earliest signal for the reduction
of ABW. Therefore, we are motivated to utilize this earliest signal
to timely control the sending rate and adapt to ABW reduction.
Quicklydeliveringtheearliestsignalbacktothesender.Merely
finding the ABW reduction signal is not enough.We need to quickly
carry this signal back to the sender. An ideal solution is directly
telling the sender from the bottleneck queue about its current status.
In this way, such a signal could bypass the inflated part of the control
loop (downlink queuing (i), downlink wireless transmission (ii), and
uplinkwireless transmission (iii) in Figure 1).Meanwhile, the latency
of theuplinkqueueat theAP (iv) and the latencyofWAN(v) is usually
stable. The uplink of the AP is often the Ethernet connection to the
Internet, usually with hundreds of Mbps capacity. TheWAN latency
(v) is the latency between the last-mile AP and the sender. The Eth-
ernet users will also suffer these two parts of control loop, which are
relatively stable according to our Ethernetmeasurements in Figure 2.
Patching the last-mile router only might be deployable. Re-
viewing the history of transport layer designs, there are a series
of excellent efforts that unfortunately are not widely deployed due
to practical issues. For example, XCP [41], RCP [58], Kickass [26],
ABC [31], and active network [25] in recent two decades all require
modifications on both the server and some or all routers. However,
servers are usually controlled by content providers (e.g., Google,
Facebook), while routers by vendors (e.g., Netgear for APs). Coordi-
nating all these parties to push anew transport innovation forward is
extremely challenging, if not impossible. Different from above work,
Zhuge patches the last-mile AP only, which could reduce the barrier
to deploy at scale. AP vendors could individually implement and
observe the performance benefitswithout co-operationwith content
providers. Moreover, from the view of home users, the last-mile AP
is the only place they can control if they seek a better performance.
We are thus motivated to limit the modifications to the last-mile to
make Zhuge deployable at scale.

3 ZhugeDesign
This section presents the design challenges and framework overview
of Zhuge to control the wireless tail latency.
3.1 Design Challenges
Zhuge handles wireless tail latency by reducing the control loop.
However, Zhuge design confronts two major challenges.

Timely and precise estimation of packet latency for RTC traf-
fic. Zhuge estimates the future latency of a packet upon its arrival
at the wireless last mile to obtain network conditions as early as
possible. A per-packet precise estimation is necessary to properly
guide CCAs in the sender for rate adaption. However, precise latency
estimation is challenging for RTC traffic in wireless environments,
as the bottleneck queue is in a transient fluctuation at a sub-RTT
granularity, due to two reasons.
• Bursty packet arrivals of RTC traffic. RTC applications generate
contents in the unit of a video frame. To reduce the end-to-end
latency, senders tend to burstily send packets of the same frame
out [21]. This indicates that the queuemight build up very quickly
even in the steady state.

• Bursty packet departures of wireless channel. The sharing nature
of wireless networks results in the contention of wireless channel
resources and frequent bandwidth fluctuation. Wireless proto-
cols tend to aggregate several packets into oneMAC frame (e.g.,
aggregated MAC protocol data unit, or AMPDU, inWiFi) to com-
promise wireless contention. In this case, tens of packets might
be aggregated into one AMPDU and dequeued simultaneously.
Anaiveestimationapproach is simplydividing thequeue lengthby

thedequeuing rate.However, this approach is facedwith a transience-
equilibrium nexus [45]: The dequeuing rate is usually measured over
a slidingwindow (e.g., 40ms forWiFi in [31]). A short windowwould
lead to the variability of measurement during the steady state, while
a longwindowmisses transient latency fluctuation at sub-RTT gran-
ularity. Thus, it is challenging to timely and precisely estimate the
per-packet latency for RTC traffic at the wireless last mile.
Effectivemessage feedback for various protocols and CCAs.
Zhuge notifies the sender with the estimated wireless network con-
ditions as quickly as possible. A straightforward solution is con-
structing a new type of feedback packets to the sender. However, for
most CCAs deployed in thewild, network conditions such as the cur-
rent available bandwidth are not explicitly delivered on the Internet.
Directly telling the network conditions to the sender would need
modifications at the sender simultaneously to make the message un-
derstandable to theCCA.Asmentionedabove,wepreferanAP-based
solution without modifying the sender for deployability at scale.

Making this challenging, transportprotocolsandCCAsadoptedby
real world applications are highly diversified. The headers of trans-
port protocols could be unencrypted (e.g., TCP) or encrypted (QUIC).
Toachieve lower latency,RTCapplicationsprefer to customizeCCAs,
which relyondifferent signals to adjust the sending rate. For example,
some of themmodify the TCP CCA in the kernel [5]. ForWebRTC-
based applications, network conditions are periodically summarized
into a special feedback packet [55]. Various CCAs make it challeng-
ing to effectively deliver the network conditions to the sender.
3.2 Framework Overview
In response to the above challenges, we design two building blocks
in Zhuge: a Fortune Teller and a Feedback Updater.
To achieve timely and precise prediction of packet latency, we

introduce the Zhuge Fortune Teller in §4 to tell the fortune (future
latency) of each packet upon its arrival. To overcome the transience-
equilibrium nexus and faithfully obtain precise per-packet latency,
we break the latency into different parts and introduce long-term
and short-term estimators. We measure the average dequeuing rate

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Feedback Updater

Fortune Teller

Predictions

Data packet
(downlink)
Feedback packet
(uplink)

Downlink queue

Server Client

Figure 5: The overall workflow of Zhuge at the last-mile AP. Zhuge
contributes the Fortune Teller and Feedback Updater.

qLong = cur(qSize) / avg(txRate)

qShort = cur(QFrontWaitTime)

tx = avg(dequeueIntvl)

totalDelay = qLong + qShort + tx

Figure 6:Different delay components that the Fortune Teller will estimate.
qLong and qShort together form the queuing delay at the network layer.
tx is the transmission delay at the link layer.

to calculate the long-term queuing delay, and the packet sojourn
time at the front of the queue to respond to short-term fluctuations.
To effectively notify the sender with the latest conditions, we

present the Zhuge Feedback Updater in §5 to convert predicted net-
work conditions to signals that senders can understand. We catego-
rize existingprotocols inRTCapplications into out-of-band feedback
and in-band feedback. For out-of-band feedback protocols, the ar-
rival of feedback packets are signals to the sender (e.g., ACK packets
in TCP). In-band feedback protocols carry network conditions in the
payload of feedback packets, such as the transport-wide congestion
control feedback (TWCC-FB) packets inWebRTC [35]. Accordingly,
Zhuge designs different feedback mechanisms to carry the latency
back to the sender for a variety of protocols.
The overall workflow of Zhuge is presented in Figure 5. When

a packet arrives at the wireless access point via the Ethernet port,
Fortune Teller would predict its fortune and also forward the packet
as usual to the downlink queue. Feedback Updater will then update
the estimation into the feedback packets in the reverse direction.
If a newly arrived packet observes a degraded network condition
(e.g., increasing queue length), estimated wireless latency could be
immediately applied to feedback packets in the reverse direction of
the same flow. In this way, the earliest signals could be carried back
to the sender, bypassing the queuing delay andwireless transmission
delay of the control loop (part (i)-(iii) in Figure 1).

4 Fortune Teller
Telling the fortune of a packet is to predict when it will arrive at
the client, i.e., the subsequent delay it will experience. In a wireless
network, such delay can be decoupled into two segments [33], in-
cluding (i) Queuing delay: the delay between the packet arriving
at the access point, and the packet leaving the queue disciplines
to the underlying driver (i.e., the delay in the network layer). (ii)
Transmission delay: the delay between the packet being passed to
the wireless driver, to the time it arriving at the receiver (i.e., the
delay in the link layer). Next we introduce how to timely predict
these two delays respectively.
4.1 Queuing Delay Prediction
Asdiscussed in §3.1, the strawman solutionof dividing the queue size
by the dequeuing rate confronts the transience-equilibrium nexus. A
short slidingwindowwill lead to drastic fluctuations of the predicted
delays due to the bursts of arrivals and departures, and a long win-
dowwill fail to quickly detect the change of network conditions. In

0 5 1 0 1 5 2 0 2 5
T i m e (m s)

t x R a t e (m e a s u r e d)q S i z eq L o n gq S h o r t

A B W d r o p

Figure 7:How qLong and qShort react to the ABW drop at 5ms.

response,we analyze how to capture the latency fluctuation incurred
by the two reasons respectively.
• Bursty packet arrival of RTC traffic. The bursty RTC traffic quickly
builds up the wireless queue. Our design choice is to predict the
packet fortune for each packet instead of on a periodic basis. In
this way, the delay differences within a burst of RTC traffic can be
captured by taking the queue size observedby eachpacket as input.

• Bursty packet departure of wireless channel. Bursty packet depar-
ture introduces transient glitches to the dequeuing rate at the mil-
lisecond timescale, which is easily averaged and therefore missed
with existing sliding window-based measurements. Our main ob-
servation is that when the dequeuing rate is suddenly reduced, an
instantly measurable signal is thewaiting time of the packet at the
front of a queue (denoted as the front packet). For example, when
the channel starts to become busy, the packet at the front of the
queue has to wait for more time to get a chance to be transmitted.

Since the causes of delay are different when the packet is at the
front of the queue and is not, we decouple the queuing delay into
two parts: long-term queuing delay (qLong) and short-term queuing
delay (qShort), as shown in Figure 6. Specifically, qLong is defined
as the delay from the timewhen one packet arrives, to the timewhen
that packet is at the front of the queue, which is used to cover the
latency fluctuation induced by wireless contention and bursty RTC
traffic. We could estimate qLong as the ratio of current queue size
over average dequeuing rate since it’s more affected by the queue
dynamics. Short-term queuing delay is the time from the time one
packet is at the front of the queue, to the time when that packet is
finally dequeued. qShort is more related to the sending pattern at
the link layer (e.g., the aggregation of MAC data units will lead to
fluctuations in qShort). We therefore individually predict qLong and
qShort, and take their sum as the estimation of queuing delay. In Fig-
ure 6, 𝑎𝑣𝑔(·) denotes the average value over a sliding window, while
𝑐𝑢𝑟 (·) denotes the current value measured at the time of calculation.
𝑞𝑆𝑖𝑧𝑒 is the size of the queue, 𝑞𝐹𝑟𝑜𝑛𝑡𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 is the time that the
current front packet of the queue has waited so far, and 𝑡𝑥𝑅𝑎𝑡𝑒 is the
dequeuing rate of the queue.

Using the combination of long-term and short-termqueuing delay
prediction has two advantages. We illustrate the advantages with an
example in Figure 7. First, using qShort can quickly detect the ABW
drop.When the ABW starts to decrease, since the queue needs some
time to build up, and the measured txRate also needs some time to
decrease due to the sliding window, qLong increase slowly. Instead,
packets have to wait for longer time to send, which could be imme-
diately observed. As illustrated in 5-15ms in Figure 7, qShortwould
dominate the increase in total queuing delay, quickly reflecting the
ABW drop. Second, using qLong could provide a stable and accurate
estimate of the queuing delay when the queue has already been built
up. For example, when the ABWwhile the bottleneck queue is still
overloaded (e.g., after 15ms in Figure 7), qLongwould dominate the
queuing delay, providing a stable and accurate estimation.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

Next, we further introduce how we handle two practical issues
in realizing the estimation of queuing delay.
Adjustments against bursty departure. The bursty departure of
the queue due to the aggregation of packets at the link layer could
affect the accuracyof the estimationof qLong:when there are several
packets in thequeue, theymaybe sent out together at once. In fact, ac-
cording to our design, fluctuations within a burst should be reflected
on qShort. Thus, when calculating qLong, we estimate 𝑞𝑆𝑖𝑧𝑒 as

qSize=max (sizeOfPacketsInQueue−maxBurstSize,0) (1)
where𝑚𝑎𝑥𝐵𝑢𝑟𝑠𝑡𝑆𝑖𝑧𝑒 is the maximum size of simultaneous packet
departures at the resolution of 1ms.
Calculation with queue disciplines. Another issue in practice
is that queues in reality might not be FIFO as assumed in research
papers [31]. For example, the default queue discipline in systemd
has been changed to fq_codel among different flows differentiated
by their 5-tuples [3]. For cellular networks, each flowalso has its own
queue isolated from competing flows [31]. In these cases, we need
to calculate the statistics of the RTC flow’s corresponding queue.
4.2 Transmission Delay Prediction
In this paper, wemainly target at the estimation of delays in theWiFi
network. We refer the readers to [31] for the estimation on cellular
networks. Predicting the transmission delay for each packet is chal-
lenging since it is correlated to the underlying wireless drivers and
physical channels. Especially for high-performance wireless devices
(e.g., 802.11ax), critical features (e.g., bit-rate selection and frame
aggregation) are coded in the hardware device and inaccessible from
the access pointCPUwithout significant vendor interaction [15]. For
example, many Netgear routers adopt the QualcommAtheros hard-
ware [1], where performance-critical features (frame aggregation,
etc.) are hard-coded and inaccessible. Therefore, it is challenging to
predict the transmission delay of the wireless channel.
According to [31], we summarize the following observations of

the transmission delay. First, similar to all link layer protocols, there
should be only one data unit in transmission in the wireless channel.
For example, an 802.11ac sendermight aggregate several packets into
one data unit (aggregated MPDU, or AMPDU). However, multiple
AMPDUs cannot be transmitted simultaneously since their signals
will interfere with each other. Therefore, the wireless driver will
aggregate several packets into one AMPDU, send it out, and wait for
acknowledgment or timeout of that AMPDU. Second, with recent
efforts in the Linux mainline, the queue in the lower layers of the
wireless network stack has been exposed to the queue discipline [33].
In this case, the lower layer queue in the wireless network stack is
only used to aggregate multiple packets into a link layer frame.

Consequently, as shown in Figure 6, the transmission delay tx is
calculated as the average interval between packet departures from
thenetwork layerqueue,withawindowsimilar to txRate.The sliding
window should be long enough to cover at least two bursts from the
sender so that packets are continuously measured. Note that since
multiple packets might be aggregated and dequeued simultaneously,
we do not calculate the intervals that are less than one millisecond.

5 Feedback Updater
Zhuge delivers the estimated latency back to the sender in a mes-
sage that is comprehensible to the sender. To avoid modifications at
end hosts, Zhuge abide by the original feedback message format of

Sender Receiver

Data Data Data

(a) Out-of-band feedback.
Sender Receiver

Data Data Data

Feedback
(b) In-band feedback.

Figure 8:Out-of-band feedback protocols do not explicitly carry the
feedback information in the payload while in-band ones do. Blue and
white blocks denote packet headers and payloads.

Protocol CCA Application

O
ut
-o
f-b

an
d

(§
5.2

) TCP
QUIC [36]

PCC [24]
BBR [18]
Copa [12]

Meta Live [29]
Windows 365 [42]

Twitch [56]
Tencent Start [5]

In
-b
an
d

(§
5.3

) RTP+RTCP
[55]

GCC [19]
NADA [65]
Scream [37]

Google Stadia [23]
Zoom [47]

Microsoft Teams [54]
Table 2:We categorize the feedback mechanisms of existing RTC
applications into out-of-band feedback and in-band feedback. Protocols
of some applications are identified by ourselves.

application protocol and CCAs. This section starts by categorizing
feedback mechanisms of popular CCAs for RTC applications (§5.1),
and then introduce our corresponding solutions (§5.2 and §5.3).
5.1 FeedbackMechanismClassification
We investigate popular RTC applications and summarize their feed-
backmechanisms in Table 2. They can be categorized into two types,
in-band and out-of-band. We present their behaviors in Figure 8.3
• In-band feedback.Asshown inFigure 8(b), in-band feedbackmeans
that the feedback information is explicitly written in the payload
of a specific type of feedback packets. For example, the Real-Time
Protocol (RTP), together with the Real-Time Control Protocol
(RTCP), follows the in-band feedback. The receiver records the
time of arrival of each data packet and periodically constructs a
feedback packet to carry time intervals back to the sender [35].

• Out-of-band feedback.Out-of-band feedback mechanisms do not
explicitly write the information related to rate control in the pay-
load of feedback packets. In contrast, the sender calculates all
network conditions itself upon receiving the feedback packets.
For example, a TCP clientwill acknowledge eachpacket it receives.
When the sender receives the ACK packet, it will then calculate
the RTT, receiving rate, and other network conditions.
We separately design solutions for the above two different feed-

back mechanisms. For out-of-band feedback mechanisms, network
conditions are measured at the sender only. Our observation is that
we can deliberately delay the feedback ACK packets to carry the
network conditions back. For in-band feedbackmechanisms, as feed-
back information is written in the payload of feedback packets, we
need to update the payload of feedback packets. Next we introduce
two solutions in detail.
5.2 Out-of-band Feedback: Delaying ACKs
ACK packets are used asmessages for applications relying on out-of-
band feedback, but are consumed in different ways by various CCAs.
For example, BBR counts the receiving rate and queries the minimal
RTT ofACKpackets for rate adaption, while Copa [12] is sensitive to

3Some protocols may utilize both feedback mechanisms. For example, the RTP sender
also measures the RTT itself, similar to TCP [55]. This RTT information is not used
for rate control, but is only used to stabilize the control loop in RTP.

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Client

(1) delay
increased(1’) delay

prediction

Server

(3’) Server detects delay
increases w/ Zhuge

(2’) adjust
delay

Reduced control loop

(2) increased
delay fed back

Ethernet

Wireless

Access Point
(2 interfaces)

(3) Server detects delay
increases w/o Zhuge

Timeline
Figure 9: Zhuge immediately delays the feedback packets in the reverse
direction to carry the predicted fortunes back.
per-packet delay. To satisfy the requirements of different CCAs, our
design goal is to faithfully deliver the estimated latency in the finest
per-packet granularity by delaying ACK packets. CCAs can then
aggregate fine-grained information and react in their own ways.
We present an illustration of how Zhuge carries the predicted

packet fortunes back from the view of AP in Figure 9. Blue arrows in-
dicate how network conditions can be sensed by the sender without
Zhuge. Assume packets with sequence numbers 𝑘 and 𝑘+1 arrive
at the AP from the server, and now the available bandwidth drops.
Without Zhuge, the packet behind (seq 𝑘+1) will be dequeued later
than expected, and the queuing delay will gradually increase ((1) in
blue). The clientwill then receive these two packetswith an enlarged
interval, and consequently acknowledge them with that interval.
The ACK packets will then arrive at and depart from the AP with
an enlarged interval ((2) in blue). As shown in Figure 10, without
Zhuge, the sender can only acknowledge increased RTT when the
ACK of delayed packets arrives at time deltaDelay.

With Zhuge, the latency of packets seq 𝑘 and 𝑘+1 could be pre-
dicted upon their arrival ((1’) in red). If the Fortune Teller predicts
that the delay is increasing, we can immediately delay earlier ACKs
of previous packets that have arrived or will arrive at the access
point. As illustrated by red arrows in Figure 9, we can deliberately
enlarge the interval between other ACK packets (ACK 𝑗 + 1 and
𝑗+2) to timely notify the sender ((2’) in red). In this case, the server
can detect the available bandwidth drops when packets with the
adjusted delay arrive at the server ((3’) in red). The RTTs of different
packets measured by the server with Zhugewould then be shifted
forward as shown in Figure 10. Consequently, the control loop of
CCAs is reduced by (𝑘 +1) − (𝑗 +1) (counted in ACK number, the
green arrow in Figure 9). Also note that, Zhuge does not need to
look at and match the sequence and ACK number – the numbers
presented here are for illustrative purpose. Instead,Zhuge only looks
at the 5-tuple to identify flows, and views the sequence and ACK
streams as blackboxes. In this way, Zhuge could still work even the
transport protocol is encrypted (e.g., QUIC).
However, downlink data packets and uplink feedback packets

arrive at the AP asynchronously. Thus, it is often impossible to one-
on-one map the delay predicted by the downlink data packets to the
uplink feedbackpackets.Whenpackets arrive, the FortuneTellerwill
be updated according to current network conditions. The updated
queue conditions include the qLong, qShort, and tx, as introduced
in §4. The final predicted total delay is calculated as:

totalDelay=qLong+qShort+tx (2)
Below we introduce design principles of Zhuge to ensure the

j + 1 j + 2 - - k + 1 k + 2

a c t u a l D e l a y

Me
asu

red
 RT

T
at t

he
ser

ver

A c k N u m b e r

w / Z h u g ew / o Z h u g e

d e l t a D e l a y

Figure 10: Zhuge shifts the curve of RTT forward by delaying earlier
returning ACK packet to quickly feedback network conditions. The
actualDelay is the control loop of Zhuge.

precision of latency of packets.
Delivering precise long-term latency in the steady state. Since
Zhuge deliberately delays the feedback packets in the uplink, a nat-
ural concern is whether such a delay will affect the estimation of
network RTT in the steady state. For example, for the packet seq
𝑘+1 in Figure 9, it has already suffered a long queuing delay in the
downlink direction. If Zhuge also introduces a non-trivial delay for
its feedbackACKpacketACK𝑘+2 in theuplinkdirection, itwill exag-
gerate the real RTT andmight interfere with the estimation of CCAs.
To handle this problem, we do not directly add the absolute esti-

mated delays from the downlink direction into the additional ACK
delay in the uplink direction. Instead, we record the relative delay
deltas, i.e. the delay difference between consecutive downlink pack-
ets. When the estimated delay is increasing, we could record a series
of positive delay deltas from the downlink direction and gradually
increase the delay in the uplink direction. When the queue has al-
ready been steadily built up (e.g., for packets after seq𝑘+1), the delay
delta would be around zero, and the feedback packet in the uplink
direction would not suffer from additional delays.
Delivering precise short-term latency fluctuation. Short-term
per-packet latency dynamics are vital for latency-sensitive CCAs
likeCopa. TheseCCAswill utilize the patterns of packet delays at the
sub-RTT level to control the sending rate. However, naively leverag-
ing the delay delta mechanismmay not faithfully deliver short-term
latency fluctuations. The reason is that short-term latency varies
packet-by-packet. Not every delay delta can be carried in one sep-
arate ACK. This might result in the accumulation of multiple delay
deltas into one ACK, which is unfaithful. For example, when three
data packets arrive at the APwith delay deltas of +1ms between each
packet, directly delaying the next ACK for +3ms would introduce
a sharper delay increase than the actual value.
To address this problem, instead of delivering per-packet delay

delta, our key idea is pursuing the distributional equivalence between
downlink delay delta and uplink ACK delays. We maintain a distri-
bution of recent delay deltas of the downlink data packets. Upon the
arrival of a downlink packet, we calculate the delay delta according
to the predicted delay by the Fortune Teller. When an uplink feed-
back packet arrives at the access point, we sample the distribution of
recent deltas, anduse the obtained value to delay the feedbackpacket.
In this case, even under bursty packet arrival and departure, Zhuge
is able to mimic the delay distributions to the feedback packets.
Preserving theorderof feedbackpackets.Ourapproachof apply-
ing delay deltas to uplink feedback packets introduces an additional
challenge of order preserving of feedback packets. For example, if
packet ACK 𝑗 + 1 and 𝑗 + 2 arrive simultaneously, and ACK 𝑗 + 2
samples a lower delay than ACK 𝑗 +1, the AP may send ACK 𝑗 +2
in front of ACK 𝑗+1, which leads to out-of-order of feedback pack-
ets and confusion at the sender. Clamping the sending time of the

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

Algorithm 1: On data packets: Out-of-band feedback
1 deltaDelay = curTotalDelay - lastTotalDelay
2 if deltaDelay ⩾ 0 then
3 deltaHistory.push_back(deltaDelay)
4 else
5 tokenHistory.push_back(-deltaDelay)
6 lastTotalDelay = curtotalDelay

Algorithm 2: On ACK packets: Out-of-band feedback
1 actualDelay = min (0, lastSentTime - curArrvTime)
2 actualDelay += random(deltaHistory)
3 while tokenHistory is not empty do
4 if tokenHistory.front > actualDelay then
5 tokenHistory.front -= actualDelay
6 actualDelay = 0
7 break

8 else
9 actualDelay -= tokenHistory.front

10 tokenHistory.pop_front

11 Schedule to send the current ACK packet after actualDelay
12 lastSendTime = curArrvTime + actualDelay

subsequent packets to the precedent ones, such as holding ACK 𝑗+2
until ACK 𝑗+1 has been sent, will lead to the overestimation of RTT.
In response, we introduce a delay token to preserve the order of

feedback packets and also avoid the overestimation of RTT.When
we need to let the subsequent feedback packets wait for the sending
of precedent packets, we store the waiting time as a delay token.
Next time when a positive delay delta is sampled, we will first try to
consume the token. In this case, the average values of actual delays
will be maintained the same as the predicted delays.

We finally present the workflow of how Zhuge Feedback Updater
uses the predicted fortune to update the feedback packets. As shown
in Algorithm 1, upon arrival of each data packet, given the pred-
icated delay of that packet, Zhuge first calculates the delay delta
(line 1). If the delta is nonnegative, we store it into a sliding win-
dow. Since Zhuge can only delay the ACK packets with a positive
time, if the delta is negative, we need to store it as tokens (line 4-
5). Asynchronously, upon arrival of each ACK packet, Algorithm 2
will be executed to properly delay ACKs. curArrvTime is the arrival
timestamp of the current ACK, and lastSentTime is the calculated
timestamp to send the last ACK packet from the AP to the server. For
order preservation,Zhuge first calculates theminimumdelay for the
current ACKpacket tomake sure that the current ACKpacketwould
be sent after previous ACK packets (line 1). Zhuge then randomly
samples a delay delta from the recent deltas in a sliding window
(line 2). Zhuge further checks if there are outstanding tokens and
consumes the tokens if available (line 3-10). Finally, the current ACK
packet will be delayed and sent after actualDelay (line 11).
5.3 In-band Feedback: Updating Payloads
For in-band feedback mechanisms such as RTCP [55], the feedback
information (e.g. per-packet receiving time) is written in the pay-
load of feedback packets. We need to update their payloads to carry
the freshly estimated latency back to the sender. We use the RTP
(data)/RTCP (feedback) protocol pair to introduce howwe update

the feedback packets with two steps.
• Step 1: Packet fortune recording. Upon the arrival of each RTP
packet, Zhugewill predict its fortune and then store the predicted
delay together with its RTP transport-wide congestion control
(TWCC) sequence number in the RTP header.

• Step 2: Feedback construction.When it’s the time to feedback the
current network conditions back to the sender (e.g., once per RTT
or per frame [35]), Zhugewill behave like the RTP receiver and
construct a TWCC feedback packet based on stored delays and
sequence numbers. To ensure timestamp consistency, Zhugewill
only send the TWCC packets constructed by itself and drop all
TWCC from the client. For other types of feedback packets (e.g.,
negative acknowledgement for loss recovery, receiver reports,
etc.), Zhugewill forward it from the client to server as normal.
Detailed RTP/RTCP packet formats are presented in RFCs [35, 55].

Meanwhile, there are two practical concerns regarding the imple-
mentation of Zhuge in-band feedback mechanism.
Time synchronization. Since the timestamps on theAPmaynot be
synchronizedwith the receiver, a straightforwardconcern iswhether
the timedifferences between theAPand the receiverwould affect the
estimation of CCAs. In fact, the server is designed to tolerate the time
differences between the server and the constructor of feedback pack-
ets (no matter clients or APs) since the server is not synchronized
with the client either. Therefore, the timestamps of produced TWCC
packets are from the same AP clock and consistent with the server.
End-to-endencryption. In some cases, RTPdata packets andRTCP
feedback packets might be end-to-end encrypted [14]. Zhuge could
work in such cases due to the following reasons. First, Zhuge does
notneed todecrypt theRTPdatapacket payload. Instead,Zhugeonly
needs to record sequence numbers, which are explicitly readable
in the header. Second, Zhuge does not need to decrypt the RTCP
feedback packet payload either. Zhuge only needs to encrypt the
constructed feedback packet so that the server can correctly decode
the packet. Fortunately, in some cases in practice, server and client
share the public key in plaintext with each other at the beginning
of the connection [14]. Zhugemight intercept and save the public
key of the server, and use it to encrypt the constructed feedback.

6 Discussion
Here we discuss some practical considerations in the deployment
of Zhuge, as well as the limitations.
Last-mile v.s. first-mile.We mainly introduce and evaluate the
performance of Zhuge in the direction of downlink, where the wire-
less network serves as the last-mile. This is because for many RTC
applications such as remote desktop, cloud gaming, and video-on-
demand, videos are disseminated from servers to clients. Remote
servers as senders adjust the sending rate and suffer from a long
control loop. For other peer-to-peer RTC applications, such as video
conferencing, the wireless network as the first-milemight also in-
troduce tail latency. In this case, queues are built up in the clients.
Mechanisms in Zhuge can also be used to handle first-mile tail la-
tency by manipulating the client-side network stack, which needs
integration with the application and is beyond our scope.
Fairness. Reducing the control loop for a CCA indicates a faster
reaction to network conditions, which might imply a greater ag-
gressiveness in both sending rate increase and decrease. A natural

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

concern is whether Zhuge impairs the fairness between optimized
flows and other ones. Our answer is no because Zhuge does not
prioritize target flows by sacrificing others. (1) When sending rate
increases, wireless queue should be near empty. In this case, flows op-
timized byZhuge have a similar control loop to thosewithoutZhuge
and will not become more aggressive. (2) Sending rate decreasemay
be caused by wireless queues building up. Zhugemerely reduces the
control loop and accelerates convergence, while the converged fair-
ness between different CCAs should be handled during the design
of CCAs [48]. We further evaluate the fairness of Zhuge in §7.6.
Scalability to new protocols. In this paper, we propose solutions
for a wide range of applications as long as they use the TCP, QUIC
or RTP/RTCP protocols. However, new protocols may evolve in the
future. For new out-of-band protocols, as long as we could identify
the flow information from packets, Zhuge could still work from
the network layer. For example, since we do not need to know the
specific sequence numbers of the packets, even QUIC encrypts all
packets end to end,Zhuge is still able toworkwithQUIC. For in-band
protocols, we need operators to release the format of the protocols
to accordingly modify the Feedback Updater in Zhuge.

7 Evaluation
We first introduce our implementation of Zhuge in §7.1 and the
experimental setup in §7.2. Then, we evaluate the performance of
Zhuge to answer the following questions:
• Can Zhuge improve the tail performance under real-world wireless
traces? We evaluateZhuge over RTCP/RTP and TCPwith five real
traces. Evaluation shows that Zhuge can reduce the ratio of long
tail latency byup to 75%, and improve the application performance
by up to 91%. (§7.3)

• How does the performance of Zhuge vary under different types of
wireless competition? We craft wireless scenarios of bandwidth re-
duction, flow competition, and wireless interference. We observe
performance improvement of Zhuge under all scenarios. (§7.4)

• Howmuch performance improvements Zhuge can bring in the real
world? Our prototype deployment of Zhuge in our office environ-
ments shows that Zhuge could improve both the network and the
application metrics from 17% to 94.7%. (§7.5)

• What is the overhead of Zhuge in terms of steady state performance,
fairness, and CPU resources? We find that Zhuge does not com-
promise the steady-state bitrate of RTC flows, fairness with other
flows, and has acceptable overhead. (§7.6)

7.1 Implementation
We implement Zhugewith both NS-3 simulator and a testbed based
on production wireless APs. In our simulation, we implement a
simplified video encoder and decoder according to reference im-
plementations inWebRTC.We implement both the RTP/RTCP and
TCP protocol stacks, as well as advanced CCAs and AQMs listed
in §7.2. We construct network layer and link layer wireless queues,
and implement Zhuge for simulation. We set the sliding window to
40ms in the Fortune Teller and Feedback Updater since our video
stream is at 25fps. For testbed experiments, we implement Zhuge in
OpenWrt, an open-source operating system for embedded network
devices. The Fortune Teller and Feedback Updater are implemented
as user-space features inOpenWrt that use packet sockets to observe
and modify packets. We identify target RTC flows by matching its

IP with a configurable IP list maintained in Zhuge [7, 10]. We use
a NetgearWNDR 3800 router [1] that runs OpenWrt and supports
WiFi 802.11n for performance evaluation. We also deploy Zhuge on
a TP-Link router to measure CPU resource overhead.
7.2 Experimental Setup
We produce videos at 1080p 24fps with an average bitrate of 2Mbps.
Belowwe present baselines, traces, and metrics we use.
Baselines. Zhuge can work with advanced CCAs and active queue
management (AQM)mechanisms. In our evaluation over RTP/RTCP,
we implement the following solutions:
• Gcc+FIFO. Google Congestion Control (Gcc) [19] is the default
CCA of WebRTC and is adopted by many applications such as
Google Stadia and Google Meet. GCC is sensitive to both packet
loss and increased network latency. Thus, we choose Gcc as the
CCA for the RTP/RTCP protocol, and use the FIFO scheduler in
wireless queues as a baseline.

• Gcc+CoDel. CoDel [52] is an AQMmechanism designed to handle
bufferbloat. It would drop packets in the front, instead of tail, of
queue when the queuing delay increases to timely deliver the
congestion signal to senders.

• Gcc+Zhuge (+CoDel).We implement Zhuge over RTP/ RTCP and
evaluate the performance when working with Gcc.

For TCP evaluation, we implement the following solutions. Note
that the CCAs we choose are loss-insensitive. Thus, to be concise,
we evaluate each solution with FIFO and CoDel respectively, and
select the better performer as the baseline.
• Copa.Copa [12] is a latency-sensitive CCA for TCP. It can achieve
low latency according tomany experiments [11, 31] and is already
deployed in real streaming services [29].

• Copa+FastAck. FastAck [15] is aWiFi AP-based optimization that
reduces latency by counterfeiting a TCP ACK packet on receiving
the 802.11 ACK from the client device.

• ABC.ABC [31] optimizes wireless network performance through
network-host coordination. It detects the network conditions di-
rectly from the access point, and reports them to the sender. How-
ever, ABC needs to modify the wireless access point, the client,
and the server simultaneously.

• Copa+Zhuge.We implement Zhuge over TCP and evaluate the
performance of Zhugewhen working with Copa.

Traces.We use five real-world traces with sub-second resolution.
Two are from WiFi networks and three from cellular. The traces
record the bandwidth and delay at each timestamp.
• W1 - Restaurant WiFi.Wemeasure the goodput of a publicWiFi
AP provided by a crowded restaurant [6] for 3 hours during dinner,
and calculate the goodput at the resolution of 200ms. The WiFi
AP operates in 2.4GHz with 802.11ac. We leave the measurement
details to Appendix A.

• W2 - OfficeWiFi.We also measure the goodput of theWiFi AP in
our office for 10 hours in the office hour. Our office APs operate
in the 5GHz band with 802.11ac.

• C1 - Indoor Mixed 4G/5G.Goodput is measured over both 4G and
5G cellular networks in an indoor scenario [49].

• C2 - City 4G and C3 - City 5G. Literature [62] collects packets over
both 4G and 5G in the wild in a metropolis. We separate the traces
into 4G and 5G according to the labels.

Metrics.We use the following metrics for evaluation.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

W 1 W 2 C 1 C 2 C 30 . 0 %
0 . 5 %
1 . 0 %
1 . 5 %
2 . 0 %
2 . 5 %
3 . 0 %

Ne
two

rk
Rtt

 > 2
00m

s

G c c + F I F O G c c + C o D e lG c c + Z h u g e

W 1 W 2 C 1 C 2 C 30 . 0 %
0 . 5 %
1 . 0 %
1 . 5 %
2 . 0 %

Fra
me

 De
lay

 > 4
00m

s

G c c + F I F O
G c c + C o D e l
G c c + Z h u g e

Figure 11: Results of trace-driven
simulations over RTP/RTCP.

W 1 W 2 C 1 C 2 C 30 %
2 %
4 %
6 %
8 %

Ne
two

rk
Rtt

 > 2
00m

s

C o p a C o p a + F a s t A c kA B C C o p a + Z h u g e

W 1 W 2 C 1 C 2 C 30 %
2 %
4 %
6 %
8 %

Fra
me

 De
lay

 > 4
00m

s

C o p a C o p a + F a s t A c kA B C C o p a + Z h u g e

Figure 12: Results of trace-
driven simulations over TCP.

1 0 0 2 0 0 4 0 0 8 0 0
0 . 0 3 %

0 . 1 %
0 . 3 %

1 %
3 %

1 -
CD

F

N e t w o r k R t t (m s)

G c c + F I F OG c c + C o D e lG c c + Z h u g e
1 0 0 2 0 0 4 0 0 8 0 00 . 1 %

0 . 3 %
1 %
3 %

F r a m e D e l a y (m s)
1 2 1 0 8 6 4 2

0 %
0 . 1 %0 . 2 %
0 . 5 %

1 %
2 %

F r a m e R a t e (f p s)
(a) TraceW1 - RestaurantWiFi

1 0 0 2 0 0 4 0 0 8 0 00 . 0 1 %
0 . 0 3 %

0 . 1 %
0 . 3 %

1 %

1 -
CD

F

N e t w o r k R t t (m s)

G c c + F I F OG c c + C o D e lG c c + Z h u g e

1 0 0 2 0 0 4 0 0 8 0 00 . 0 1 %
0 . 0 3 %

0 . 1 %
0 . 3 %

1 %

F r a m e D e l a y (m s)
1 2 1 0 8 6 4 2

0 %
0 . 0 1 %0 . 0 2 %
0 . 0 5 %

0 . 1 %

F r a m e R a t e (f p s)
(b) Trace C1 - Indoor Mixed 4G/5G

Figure 13:Delay distributions of Zhuge and different baselines over
RTP/RTCP. Note that all y-axes are log-scaled.

• RTT.We measure the RTT of packets at the network layer. We
consider the ratio of RTT >200ms as tail latency ratio.

• Frame delay. Frame delay is defined as the time interval between
frame encoding at the sender and decoding at the receiver. One
frame can only be decoded until all packets of this frame have
arrived and previously referred frames have already been decoded.
Therefore, framedelay is adirectmetric to evaluate latency-related
user experience of videos. We consider a frame with delay of
>400ms as a delayed frame.

• Frame rate. Users will also experience stutters if the frame-rate
arriving at the client is too low. Thus, we can also assess video
quality according to the frame rate. We consider a per-second
frame rate of <10fps as low frame rate.

In this paper, we do not adopt the video quality metrics such as
PSNR [4], SSIM [59], and VMAF [44] since they do not reflect the
end-to-end interactive delay. Some recent efforts are focused on
subjective experience metrics [20], which is left for our future work.
7.3 Trace-driven Simulation
We use NS-3 for simulation to evaluate the tail network latency and
application performance of Zhuge under real-world wireless traces.
We emulate the bottleneck link in NS-3with five traces, and evaluate
Zhuge over RTP/RTCP and TCP.
RTP/RTCP.Aspresented inFigure11, forRTP/RTCP,Zhugeoutper-
forms all baselines in all traces and achieves consistent low latency.
Specifically, Zhuge could reduce the ratio of long network RTT by

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

Du
rat

ion
 (se

c)

t x R a t e R e d u c t i o n (k)
(a) NetworkRtt>200ms

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

t x R a t e R e d u c t i o n (k)
(b) FrameDelay>400ms

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

t x R a t e R e d u c t i o n (k)

G c c + F I F OG c c + C o D e lG c c + Z h u g e

(c) FrameRate<10fps
Figure 14: Performance comparison over RTP under ABW drop.

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

Du
rat

ion
 (se

c)

t x R a t e R e d u c t i o n (k)
(a) NetworkRtt>200ms

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

t x R a t e R e d u c t i o n (k)
(b) FrameDelay>400ms

2 x 5 x 1 0 x 2 0 x 5 0 x0
0 . 20 . 51

2
51 0

t x R a t e R e d u c t i o n (k)

C o p aC o p a + F a s t A c kA B CC o p a + Z h u g e

(c) FrameRate<10fps
Figure 15: Performance comparison over TCP under ABW drop.

45% to 75% compared with the best baseline. Consequently, the de-
layed frame ratio is reduced by 38% to 92% in different traces, which
significantly reducesvideo rebufferingand improvesuser experience.
We also observe that Gcc+CoDel outperforms Gcc+FIFO in trace
C1 and C3 with respect to frame delay, but falls short in the other
three traces. This is because delay-based CCAs like GCCmay not be
sensitive to packet losses unless it’s severe (packet loss rate >10%).
We further present the detailed results of RTP/RTCP based on

traceW1 (WiFi) and C1 (cellular) in Figure 13 to better understand
the optimization of Zhuge. We observe that Zhuge could reduce the
tail latency, long frame delay ratio, and low frame rate ratio at all tail
percentiles against two baselines. For example, the P99 tail latency
is reduced from 400ms to 170ms, and 400ms delayed frame ratio is
reduced from 1% to 0.55% based on traceW1.Moreover,Zhuge could
also reduce the ratio of low frame rate by at least 50% in two traces.
TCP. Figure 12 shows that for TCP, as a pure AP-based solution,
Zhuge could outperform other AP-based solutions (Copa+FastAck)
and achieve comparable performance with end-AP coordinated so-
lution (ABC) in all traces. In terms of tail latency, Copa+Zhuge
comprehensively outperforms Copa and Copa+FastAck. We also ob-
serve that Copa+FastAck does not consistently perform better than
Copa due to FastAck’s aggressive retransmission strategy. ABC has
a better performance than Copa+Zhuge on trace C3, as ABC could
coordinate theAPandendhostswith customized feedbackmessages,
which may not be deployable at scale as discussed in §2.3. For frame
delay, Copa+Zhuge achieves the best performance over competi-
tors including ABC in all traces except C1, where Copa+FastAck is
slightly better. ABC does not perform well on frame delay due to its
aggressive rate ascending design.We further repeat our experiments
with the traces used in the ABC paper in Appendix B and find that
Zhuge also achieves comparable performance with ABC.
7.4 Microbenchmarks underWireless Fluctuations
We further simulate the performance of Zhuge under bandwidth
reduction, flow competition, and wireless interference.
Bandwidth drop.We evaluate the capability of Zhuge to quickly
adapt to bandwidth reduction and reduce the period of network con-
dition and application performance degradation. We first simulate a
link with 50ms RTT and 30Mbps bandwidth and start transmission.

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0 1 0 2 0 3 0 4 00
2
4
6
8

1 0

Du
rat

ion
 (se

c)

F l o w
(a) NetworkRtt>200ms

0 1 0 2 0 3 0 4 00
2
4
6
8

1 0

F l o w
(b) FrameDelay>400ms

0 1 0 2 0 3 0 4 00
2
4
6
8

1 0

F l o w

G c c + F I F OG c c + C o D e lG c c + Z h u g e

(c) FrameRate<10fps
Figure 16: Performance comparison over RTP under competition.

0 1 0 2 0 3 0 4 00 %
5 %

1 0 %
1 5 %
2 0 %
2 5 %
3 0 %

Fre
qu

enc
y

I n t e r f e r e r
(a) NetworkRtt>200ms

0 1 0 2 0 3 0 4 00 %
4 %
8 %

1 2 %
1 6 %

I n t e r f e r e r

G c c + F I F OG c c + C o D e lG c c + Z h u g e

(b) FrameDelay>400ms

0 1 0 2 0 3 0 4 00 . 0 %
0 . 5 %
1 . 0 %
1 . 5 %
2 . 0 %
2 . 5 %

I n t e r f e r e r
(c) FrameRate<10fps

Figure 17: Performance comparison over RTP under interference.

When the CCA reaches the steady state, we reduce the bandwidth by
a factor of𝑘× from 2 to 50, andmeasure the duration of RTT> 200ms,
frame delay > 400ms, and frame rate < 10fps before convergence.
As shown in Figure 14, for RTP/RTCP, Gcc+Zhuge reduces the

duration of network degradations and application performance by at
least 50% in a wide range of settings. Results over TCP show similar
results aspresented inFigure15.Comparedwith thebetterperformer
of Copa and Copa+FastAck, Copa+Zhuge could significantly reduce
the duration of high network RTT by 14% to 64.3% when 𝑘 <30. For
𝑘 ⩾ 30, our observation is that the degradation duration is mainly
bounded by the TCP retransmission timeout (RTO) due to severe
packet loss, and the performance improvement of Zhuge is not as
remarkable. Similarly, Zhuge outperforms ABC when 𝑘 < 15 but
under-performs ABC (joint network-host optimization). Neverthe-
less, according to our measurements in Figure 3(b), 99% bandwidth
drop cases fall into 𝑘 <15, where Zhuge brings good improvements.
Flow competition. We then investigate how would flows with
Zhuge behave when confronting competitors on the same bottle-
neck queue. We start a different number of bulk transfer flows with
TCP CUBIC as competitors and let them compete in the access point.
We measure the duration of network RTT >200ms, frame delay
>400ms, and frame rate<10fps. Figure 16 shows that comparedwith
FIFO and CoDel, Zhuge could reduce the duration of performance
degradation by up to 40% in all cases. Thus, Zhuge could effectively
ameliorate the performance degradation under competition.
Wireless interference.Wemeasure the duration of performance
degradation with different numbers of wireless interferers. These
interferers are also bulk transfer applications based on TCP CUBIC,
yet connected to different access points. They compete for the same
wireless channel with the RTC flow optimized by Zhuge. We vary
the number of interferers from 5 to 40. Note that in the scenario of
wireless interference, the interference in wireless channels happens
all the time, thus we cannot calculate the degradation duration for
a single event as in previous two scenarios. As shown in Figure 17,
Zhuge could reduce the frequency of degradation of both network
condition and application performance by at least 50%. Note that
according to a recentmeasurement byCisco [15], there could beup to
29 interferers at the 90th percentile on a 2.4GHz channel. Therefore,
Zhuge could bring benefits in a noisy wireless environment.

s c p m c s r a w0 . 0 %
0 . 2 %
0 . 4 %

7 %
8 %
9 %

Ne
two

rkR
tt>

200
ms

(a) Network RTT
s c p m c s r a w0 . 0 %0 . 2 %0 . 4 %0 . 6 %7 %

8 %
9 %

Fra
me

De
lay

>40
0m

s

(b) Frame delay
s c p m c s r a w0 . 0

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

Bit
rat

e (M
bp

s) G c c + F I F OG c c + Z h u g e

(c) Bitrate
Figure 18: Testbed experiments of Zhugewith an RTC flow.

1 4 1 6 6 4 2 5 60 %
7 0 %
8 0 %
9 0 %

1 0 0 %

CD
F

P r e d i c t i o n E r r o r (m s)

W 1W 2C 1C 2C 3

(a) Prediction error by trace.

1 4 1 6 6 4 2 5 6
1
4

1 6
6 4

2 5 6

R e a l d e l a y (m s)

Est
ima

ted
 De

lay
 (m

s)

0 %
2 0 %
4 0 %
6 0 %
8 0 %
1 0 0 %

F r e q u e n c y

(b) Heatmap (normalized in each row).
Figure 19: Prediction accuracy of Zhuge Fortune Teller.

7.5 Real-World Experiments
We further evaluate the performance of Zhugewith our OpenWrt-
basedWiFi AP testbed. We set up an RTC server and a client with
the WebRTC APIs [9] in Microsoft Edge browsers on two laptops.
The server streams a timestamped video to the client through the
peerconnectionAPI over RTP/RTCP and GCC. The server is wire-
connected to the AP, while the client connects to AP throughWiFi.
We evaluate the performance of Zhuge in the following scenarios,
each lasting for 6 hours.
• scp. This experiment is designed to evaluate the performance
of Zhuge over RTC flows when competing with other flows. We
periodically start and stop an scp file transmission from the server
to the client every 30 seconds.

• mcs. This experiment is designed to mimic fluctuating wireless
channels. 802.11 access points will dynamically change the mod-
ulation coding scheme (MCS) at the link layer to adapt to channel
conditions. Therefore, similar to [31], we randomly change the
MCS every 30 seconds with the Linux iw command and assess
Zhuge’s reaction to fluctuation.

• raw. We report the results of running the RTC application in our
crowded office without additional configurations.

Wemeasure the network RTT by analyzing the packet captures, and
frame delay by calculating the timestamp difference between video
sent and video received. As shown in Figure 18(a) and 18(b), both the
network RTT and frame delay of the RTC flowwith Zhuge has been
improved against baselines by 17% to 95% (network RTT) and 9% to
67% (frame delay) in all scenarios. This indicates that Zhuge could
effectively reduce the tail latency in real wireless environments.

Meanwhile, we also evaluate the capability of Zhuge to maintain
similar performance in a steady wireless channel compared with the
baseline. We evaluate the steady-state performance by measuring
the video’s average bitrate based onMicrosoft Edge and present the
results in Figure 18(c).We observe thatZhuge couldmaintain similar
average bitrate, demonstrating its maintenance of performance in
the steady state. Note that the improvement in tail latency is not
reflected in the bitrate results.
7.6 ZhugeDeep Dive
Finally, we report the fairness and runtime overhead of Zhuge.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

R T P / R T C P T C P0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 % cba
cb

No
rm

aliz
ed

Go
od

pu
t w / o Z h u g e w / Z h u g e

a

Figure 20: Fairness of Zhuge.

1 2 3 4 50 %
2 0 %
4 0 %
6 0 %
8 0 %

CP
U U

tiliz
atio

n

C o n c u r r e n t Z h u g e F l o w

N e t g e a rT P - L i n k

Figure 21: CPU Overhead.

Estimation accuracy.Wemeasure the accuracy in the estimation
of packet delay in §4.1. We compare the estimated delay and the real
delaymeasured later for the samepacket.Wepresent the distribution
of the prediction error in different traces in Figure 19(a). In most
cases, the prediction error is much less than the RTT in our exper-
iment (50ms). We also put the different results into bins and present
the heatmap of the frequency of each bin. As shown in Figure 19(b),
when the estimated delay is low (1-64ms), the estimation is usually
accurate. When the estimated delay is high (>64ms), the estimation
could be inaccurate, but the real delays are still high enough (more
than one RTT) to trigger the sender to reduce the sending rate.
Internal fairness.We analyze whether Zhuge affects the bitrate
fairness in the steady state when optimizing two RTC flows simul-
taneously. We report the goodput of RTC flows normalized by the
link capacity when they compete for the same AP. Bar 𝑎 in Figure 20
reports the goodput of two flowswithoutZhuge, while Bar 𝑐 reports
the goodput when both flows are optimized by Zhuge. We discover
that the bitrate fairness in the steady state is not affected by Zhuge
with GCC over RTP/RTCP or Copa over TCP. For GCC, Zhuge even
slightly increases the average flow bitrate by 10%. This is because
Zhuge enables the sender to react faster to the situation where the
sending rate oversteps the link capacity.
External fairness. We evaluate whether Zhuge advantages op-
timized flows by compromising other flows with the same CCAs
during competition. Wemeasure the bitrate of two RTC flows, one
of which is optimized by Zhuge and the other one is not. We present
the results in the bar b in Figure 20. For both GCC and Copa, the
bitrate difference of the two flows are < 3%. Thus, as discussed in §6,
the performance improvement of Zhuge is not built on sacrificing
the performance of other flows. Instead, two flows compete fairly,
as intended by CCAs.
CPU overhead.Wemeasure the CPU utilization of Zhugewith our
implementation on an OpenWrt-based NetgearWiFi AP, as well as a
TP-Link TL-WDR4900 [2] AP.Wemeasure the CPUutilizationwhen
processing different numbers of concurrent unencrypted RTC flows
byZhuge, andpresent theresult inFigure21.These twoAPsmanufac-
tured ten years ago could still supportZhuge to process 5 concurrent
RTC flows, which can cover many real scenarios (e.g., homeWiFi).
There are several potential directions to optimize the resource

overhead of Zhuge. First, when the CPU utilization is high, instead
of estimating all the downlink packets, Zhuge could selectively up-
date the network conditions. As long as the time interval between
estimation is negligible (e.g., several milliseconds), the control loop
is still reduced. Moreover, our prototype implementation of Zhuge
is based on user-space packet sockets, which could be further op-
timized by inserting Zhuge as a kernel module. Finally, there are
also successful deployment of other per-packet state maintenance
features in commercial APs [15, 43].

8 RelatedWork
Wireless performance optimization. Besides solutions discussed
in §2.3, there are also several related research efforts in the network
layer and above to improve the performance of wireless networks.
One line of solutions is to design specific CCAs such as Sprout [60],
Verus [64], and others. Zhuge by design could work together with
these algorithms, similar to working with Copa in §7. There are also
proposals todecouple thewiredconnection fromthewireless connec-
tion [16] or to bettermanage the retransmission fromrouters [13, 15].
The proxy independently manages the sending rate on both links
to reduce the control loop for the transport layer. However, for RTC
applications, contents are generated from the sender (e.g., encoder).
Therefore, the control loop is still high in terms of the application
layer. Beyond solutions purely in the network layer and above, there
are also many research and industry efforts to improve the wireless
performance by cross-layer designs [53, 61]. These solutions need
considerable integration with the server or the client, which might
prevent their deployment at scale.
Transient performance. As discussed in §2.3, with the develop-
ment of steady-state performance of CCAs, the transient perfor-
mance is attracting more and more attention. In the research of the
transport layer, there are also recent interests in the analysis or quan-
tification of the transient performance of CCAs in bothWAN [57, 63]
and data centers [45]. These solutions still address or analyze the
transient performance from theviewof the server. In contrast,Zhuge
presents a deployable solution to improve transient performance
from the vantage point of access points in wireless networks.
Transport optimizations for RTC. There are also several trans-
port innovations to achieve consistent performance for the RTC
applications. For example, proposals in [19, 27] optimize the retrans-
mission mechanism of RTC applications. Fouladi et al. [28] further
adapts the stream encoder to network conditions in order to reduce
degradation of the application performance (e.g., frame delay). How-
ever, the bandwidth drops due to external factors are not predictable
in advance. In contrast, Zhuge focuses on the timely reaction to
network conditions, which could also work together with these re-
search efforts. We leave the joint optimization with other control
mechanisms beyond CCA for future work.

9 Conclusion
We propose Zhuge, an in-AP solution that reduces the control loop
to alleviate tail latency for RTC applications in wireless networks.
Zhuge predicts the fortune of each packet upon its arrival with the
Fortune Teller, and quickly notify the sender about these fortunes
over a variety of protocols with the Feedback Updater. We evaluate
the performance of Zhugewith both real-world trace-driven simula-
tions and deployments in the testbed. Experiments show that Zhuge
reduces the tail of long latency and RTC application performance
degradation by 17% to 95% in different scenarios.

This work does not raise any ethical issues.
Acknowledgements.We sincerely thank our shepherd Brad Karp,
anonymous reviewers, and labmates in Routing Group from Ts-
inghua University for their valuable feedback. This work is spon-
soredbyNationalNatural ScienceFoundationofChina (No.62002196
and 61832013), Alibaba Innovative Research (AIR) Program, and Na-
tional Science Foundation (No. 1850384). Bo Wang and Chen Sun
are the corresponding authors.

Zhuge SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

References
[1] 2011. [OpenWrt Wiki] NETGEARWNDR3800. https://openwrt.org/toh/netg

ear/wndr3800.
[2] 2013. [OpenWrtWiki] TP-Link TL-WDR4900. https://openwrt.org/toh/tp-link/tl-

wdr4900.
[3] 2014. [systemd-devel] [ANNOUNCE] systemd 217. https://lists.freedesktop.or

g/archives/systemd-devel/2014-October/024662.html.
[4] 2020. Peak signal-to-noise ratio -Wikipedia. https://en.wikipedia.org/wiki/Pe

ak_signal-to-noise_ratio.
[5] 2020. Start - Tencent Cloud Gaming. https://start.qq.com/.
[6] 2021. Manwuyixiang Roast Lamb Leg【满屋溢香烤羊腿·烤海鲜(双清路店)】.

http://cnc.www.dianping.com/shop/igEL946mgXy0B2KV.
[7] 2021. Prepare your network for Meet video calls - GoogleWorkspace Admin Help.

https://support.google.com/a/answer/1279090.
[8] 2021. Troubleshooting your Stadia experience - Stadia Help.

https://support.google.com/stadia/answer/9595943.
[9] 2021. WebRTC Samples. https://webrtc.github.io/samples/.
[10] 2021. Zoom network firewall or proxy server settings – Zoom Support.

https://support.zoom.us/hc/en-us/articles/201362683-Zoom-network-firewall-
or-proxy-server-settings.

[11] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic meets modern:
A pragmatic learning-based congestion control for the Internet. In Proc. ACM
SIGCOMM.

[12] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based
Congestion Control for the Internet. In Proc. USENIX NSDI.

[13] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H Katz. 1995.
Improving TCP/IP performance over wireless networks. In Proc. ACMMobiCom.

[14] Mark Baugher, DMcGrew, MNaslund, E Carrara, and Karl Norrman. 2004. The
secure real-time transport protocol (SRTP). IETF RFC 3711 (2004).

[15] Apurv Bhartia, Bo Chen, Feng Wang, Derrick Pallas, Raluca Musaloiu-E, Ted
Tsung-Te Lai, and Hao Ma. 2017. Measurement-based, practical techniques to
improve 802.11 ac performance. In Proc. ACM IMC.

[16] John Border, Markku Kojo, JimGriner, GabrielMontenegro, and Zach Shelby. 2001.
Performance enhancing proxies intended to mitigate link-related degradations.
IETF RFC 3135 (2001).

[17] brianhu. 2021. Google Meet Troubleshooting Playbook - Network and Hardware
Troubleshooting. https://www.googlecloudcommunity.com/gc/Workspace-
Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-
Hardware/ta-p/165810.

[18] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. 2016. BBR: Congestion-based congestion control. ACMQueue (2016).

[19] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2017.
Congestion control for web real-time communication. IEEE/ACM Transactions
on Networking (2017).

[20] Ke Chen, Han Wang, Shuwen Fang, Xiaotian Li, Minghao Ye, and H. Jonathan
Chao. 2022. RL-AFEC: Adaptive Forward Error Correction for Real-time Video
Communication Based on Reinforcement Learning. In Proc. ACMMMSys.

[21] Yusuf Cinar, Peter Pocta, Desmond Chambers, and HughMelvin. 2021. Improved
jitter buffer management for WebRTC. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM) (2021).

[22] Yousri Daldoul, Djamal-Eddine Meddour, and Adlen Ksentini. 2020. Performance
Evaluation of OFDMA andMU-MIMO in 802.11 ax Networks. Computer Networks
(2020).

[23] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and Danilo
Giordano. 2021. A network analysis on cloud gaming: Stadia, GeForce Now and
PSNow. Network (2021).

[24] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC vivace: Online-learning congestion control. In
Proc. USENIX NSDI.

[25] Theodore Faber. 1998. ACC: using active networking to enhance feedback
congestion control mechanisms. IEEE network (1998).

[26] Marcel Flores, AlexanderWenzel, and Aleksandar Kuzmanovic. 2016. Enabling
router-assisted congestion control on the Internet. In Proc. IEEE ICNP.

[27] Silas L Fong, Salma Emara, Baochun Li, Ashish Khisti, Wai-Tian Tan, Xiaoqing
Zhu, and John Apostolopoulos. 2019. Low-latency network-adaptive error control
for interactive streaming. In Proc. ACMMultimedia.

[28] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify: Low-latency network video through tighter
integration between a video codec and a transport protocol. In Proc. USENIXNSDI.

[29] Nitin Garg. 2019. COPA congestion control for video performance - Engineering
at Meta. https://engineering.fb.com/2019/11/17/video-engineering/copa/.

[30] Moinak Ghoshal, Pranab Dash, Zhaoning Kong, Qian Xu, Y.Charlie Hu, Dimitrios
Koutsonikolas, and Yuanjie Li. 2022. Can 5G mmWave Enable multi-user AR
apps?. In Proc. PAM.

[31] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller forWireless
Networks. In Proc. USENIX NSDI.

[32] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Review (2008).

[33] Toke Høiland-Jørgensen, Michał Kazior, Dave Täht, Per Hurtig, and Anna
Brunstrom. 2017. Ending the anomaly: Achieving low latency and airtime fairness
in wifi. In Proc. USENIX ATC.

[34] Toke Høiland-Jørgensen, Dave Täht, and JonathanMorton. 2018. Piece of CAKE:
a comprehensive queue management solution for home gateways. In Proc. IEEE
LANMAN.

[35] Stefan Holmer, Magnus Flodman, and Erik Sprang. 2015. RTP extensions for
transport-wide congestion control. https://datatracker.ietf .org/doc/html/draft-
holmer-rmcat-transport-wide-cc-extensions-01.

[36] Jana Iyengar and Ian Swett. 2021. Quic loss detection and congestion control.
IETF RFC 9002 (2021).

[37] Ingemar Johansson and Zaheduzzaman Sarker. 2017. Self-Clocked Rate
Adaptation for Multimedia. IETF RFC 8298.

[38] Alan Jones, Peter Sevcik, and Rebecca Wetzel. 2021. Internet Connection
Requirements for Effective Video Conferencing to Support Work from
Home and eLearning | NetForecast. https://www.netforecast.com/wp-
content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf.

[39] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski, Wenxiao Zhang, and Pan
Hui. 2017. A measurement study on achieving imperceptible latency in mobile
cloud gaming. In Proc. ACMMMSys.

[40] Ad Kamerman and Leo Monteban. 1997. WaveLAN®-II: a high-performance
wireless LAN for the unlicensed band. Bell Labs technical journal (1997).

[41] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion control for high
bandwidth-delay product networks. In Proc. ACM SIGCOMM.

[42] Erik Kjerland, Matt Shadbolt, Anthony Watherston, Alma Jenks, and Doug
Eby. 2021. Network requirements for Windows 365 | Microsoft Docs. https:
//docs.microsoft.com/en-us/windows-365/enterprise/requirements-network.

[43] Ingo Kofler, Martin Prangl, Robert Kuschnig, and Hermann Hellwagner. 2008.
An H. 264/SVC-based adaptation proxy on aWiFi router. In Proc. NOSSDAV.

[44] Zhi Li, AnneAaron, IoannisKatsavounidis, AnushMoorthy, andMeghaManohara.
2016. Toward A Practical Perceptual Video Quality Metric | Netflix TechBlog.

https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-
metric-653f208b9652.

[45] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh, Balaji Prabhakar, Mendel
Rosenblum, and Anirudh Sivaraman. 2021. Breaking the Transience-Equilibrium
Nexus: A New Approach to Datacenter Packet Transport. In Proc. USENIX NSDI.

[46] Jason Livingood. 2021. Working latency — the next QoE frontier | APNIC Blog.
https://blog.apnic.net/2021/12/02/working-latency-the-next-qoe-frontier/.

[47] Bill Marczak and John Scott-Railton. 2020. Move Fast and Roll Your Own Crypto:
A Quick Look at the Confidentiality of Zoom Meetings - The Citizen Lab.
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-
at-the-confidentiality-of-zoom-meetings/.

[48] GustavoMarfia, Claudio E Palazzi, Giovanni Pau,Mario Gerla, andMarco Roccetti.
2010. TCP Libra: Derivation, analysis, and comparison with other RTT-fair TCPs.
Computer Networks (2010).

[49] Zili Meng, Yaning Guo, Yixin Shen, Jing Chen, Chao Zhou, Minhu Wang, Jia
Zhang, Mingwei Xu, Chen Sun, and Hongxin Hu. 2021. Practically Deploying
Heavyweight Adaptive Bitrate Algorithms With Teacher-Student Learning.
IEEE/ACM Transactions on Networking (2021).

[50] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.
In Proc. ACMHotNets.

[51] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A first look at commercial 5G performance on
smartphones. In Proc. WWW.

[52] Kathleen Nichols and Van Jacobson. 2012. Controlling queue delay. Commun.
ACM (2012).

[53] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee, Sangtae Ha, and Kyunghan
Lee. 2018. ExLL: An extremely low-latency congestion control for mobile cellular
networks. In Proc. ACM CoNEXT.

[54] Carolyn Rowe, Diana Hanson, Chiffers Craig, David Coulter, Justin Gilmore,
David Byrd, Ajayan Borys, Kelly Baker, Baard Hermansen, Serdar Soysal, et al.
2021. Microsoft Teams call flows - Microsoft Teams | Microsoft Docs. https://
docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows.

[55] Zaheduzzaman Sarker, Colin Perkins, Varun Singh, andM Ramalho. 2021. RTP
Control Protocol (RTCP) Feedback for Congestion Control. IETF RFC 8888 (2021).

[56] Yueshi Shen. 2017. Live Video Transmuxing/Transcoding: FFmpeg vs Twitch-
Transcoder, Part I | Twitch Blog. https://blog.twitch.tv/en/2017/10/10/live-video-
transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/.

[57] Yixin Shen, Zili Meng, Jing Chen, and Mingwei Xu. 2021. Quantifying the
transient performance of congestion control algorithms. In Proc. ACM SIGCOMM
Poster and Demo.

[58] C-H Tai, Jiang Zhu, and Nandita Dukkipati. 2008. Making large scale deployment
of RCP practical for real networks. In Proc. IEEE INFOCOM.

[59] ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions

https://openwrt.org/toh/netgear/wndr3800
https://openwrt.org/toh/netgear/wndr3800
https://openwrt.org/toh/tp-link/tl-wdr4900
https://openwrt.org/toh/tp-link/tl-wdr4900
https://lists.freedesktop.org/archives/systemd-devel/2014-October/024662.html
https://lists.freedesktop.org/archives/systemd-devel/2014-October/024662.html
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://start.qq.com/
http://cnc.www.dianping.com/shop/igEL946mgXy0B2KV
https://support.google.com/a/answer/1279090
https://support.google.com/stadia/answer/9595943
https://support.google.com/stadia/answer/9595943
https://webrtc.github.io/samples/
https://support.zoom.us/hc/en-us/articles/201362683-Zoom-network-firewall-or-proxy-server-settings
https://support.zoom.us/hc/en-us/articles/201362683-Zoom-network-firewall-or-proxy-server-settings
https://support.zoom.us/hc/en-us/articles/201362683-Zoom-network-firewall-or-proxy-server-settings
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://www.googlecloudcommunity.com/gc/Workspace-Product-Articles/Google-Meet-Troubleshooting-Playbook-Network-and-Hardware/ta-p/165810
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://datatracker.ietf.org/doc/html/draft-holmer-rmcat-transport-wide-cc-extensions-01
https://datatracker.ietf.org/doc/html/draft-holmer-rmcat-transport-wide-cc-extensions-01
https://www.netforecast.com/wp-content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf
https://www.netforecast.com/wp-content/uploads/NFR5137-Videoconferencing_Internet_Requirements.pdf
https://docs.microsoft.com/en-us/windows-365/enterprise/requirements-network
https://docs.microsoft.com/en-us/windows-365/enterprise/requirements-network
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://blog.apnic.net/2021/12/02/working-latency-the-next-qoe-frontier/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows
https://docs.microsoft.com/en-us/microsoftteams/microsoft-teams-online-call-flows
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Zili Meng et al.

W 1 W 2 C 1 C 2 C 30 . 0 %
0 . 5 %
1 . 0 %
1 . 5 %
2 . 0 %
2 . 5 %

Fra
me

 Ra
te <

 10
fps

G c c + F I F O G c c + C o D e lG c c + Z h u g e

(a) RTP/RTCP.
W 1 W 2 C 1 C 2 C 30 %

1 %
2 %
3 %
4 %
5 %

Fra
me

 Ra
te <

 10
fps

C o p a C o p a + F a s t A c kA B C C o p a + Z h u g e

(b) TCP.
Figure 22: The ratio of frame rate<10fps over real-world traces.

on Image Processing (2004).
[60] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic

forecasts achieve high throughput and low delay over cellular networks. In Proc.
USENIX NSDI.

[61] Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. PBE-CC: Congestion control
via endpoint-centric, physical-layer bandwidth measurements. In Proc. ACM
SIGCOMM.

[62] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding operational 5g:
A first measurement study on its coverage, performance and energy consumption.
In Proc. ACM SIGCOMM.

[63] Yang Richard Yang, Nin Sik Kim, and Simon S Lam. 2001. Transient behaviors
of TCP-friendly congestion control protocols. In Proc. IEEE INFOCOM.

[64] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive congestion control for unpredictable cellular
networks. In Proc. ACM SIGCOMM.

[65] Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, and Sergio Mena de la Cruz. 2020.
Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control
Scheme for Real-TimeMedia. IETF RFC 8698.

Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

A Measurement Details
We carried out two measurements in this paper, including the mea-
surement of the network conditions and application performance
of our online RTC application in §2.3, and the trace collection of
available bandwidth fromWiFi networks in §7.2. We present their
measurement details as below.
Performance of our online RTC application.Wemeasure our
online RTC application for one month in December 2021, with mil-
lions of user sessions, and billions of video frames. Among them, the
Ethernet, WiFi, and 4G are the top-three types of access networks in
our users. We then calculate the tail performance metrics as shown
in §2.3.
AvailablebandwidthofWiFinetworks.Wemeasure theavailable
bandwidth of theWiFi network in a nearby restaurant [6], and in our
office.We continuously download a large file from another Ethernet-
connected server in the same subnet with wget. To bypass the po-
tential rate limits over the UDP protocol, we run TCP CUBIC on the
server.We calculate the receiving rate from thepacket captures at the
client as the available bandwidth. The average receiving rate of the
officeWiFi and restaurantWiFi are 27Mbps and 21Mbps respectively.

B Supplementary Trace-Driven Simulations

Frame-rate improvements.Wefurtherpresent thesummaryof the
performance improvements on the frame-rate in Figure 22. We mea-
sure the ratio of low frame-rate (per-second frame rate <10fps). As
shown inFigure 22(a) and22(b),Zhuge achieves the smallest (or close
to smallest) low frame rate ratio among all baselines. ABC does not
perform well in terms of frame rate in these five traces due to its ag-
gressiveness on rate increasing, whichwewill further analyze below.

Copa ABC Copa+Zhuge
P(NetworkRtt > 200ms) 0.1% 6.4% 0.1%
P(FrameDelay > 400ms) 9.5% 2.4% 3.2%
P(FrameRate < 10fps) 4.5% 0.8% 1.5%
Table 3: Performance of on the original traces of ABC.

Results over the traces used in ABC [31].We further rerun the
simulation over the original traces evaluated in the ABC paper. We
find that ABC does perform the best among all solutions in terms of
application performance (frame delay and frame rate). Nevertheless,
Zhuge could still significantly improve the application performance
against the original Copa by 67% and achieve comparable perfor-
mance to ABC. This indicates that Zhuge could achieve comparable
performance without modifications on the server or the client like
ABC.We do not present this result in the main text since the traces
evaluated in ABCwere collected 10 years ago while other traces are
collected in recent 2 years. The average available bandwidth of ABC
traces is an order of magnitude lower than that in the 5 traces in §7.2.
Thus, the traces in ABCmay not faithfully reflect the development
of the wireless access networks in recent years.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Understanding Wireless Tail Latency
	2.2 Existing Solutions
	2.3 Our Proposal: Reducing the Control Loop

	3 Zhuge Design
	3.1 Design Challenges
	3.2 Framework Overview

	4 Fortune Teller
	4.1 Queuing Delay Prediction
	4.2 Transmission Delay Prediction

	5 Feedback Updater
	5.1 Feedback Mechanism Classification
	5.2 Out-of-band Feedback: Delaying ACKs
	5.3 In-band Feedback: Updating Payloads

	6 Discussion
	7 Evaluation
	7.1 Implementation
	7.2 Experimental Setup
	7.3 Trace-driven Simulation
	7.4 Microbenchmarks under Wireless Fluctuations
	7.5 Real-World Experiments
	7.6 Zhuge Deep Dive

	8 Related Work
	9 Conclusion
	References
	A Measurement Details
	B Supplementary Trace-Driven Simulations

