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ABSTRACT
Clos networks have a long history in networking. In early tele-

phone networks and classic network flow problems, Clos networks

have been shown to emulate the performance properties of an ideal

macro-switch connecting sources to destinations. Therefore, Clos

networks are a natural choice for modern data-centers, and are

widely deployed. However, data-centers operate on different traf-

fic assumptions than those prevalent in telephone networks and

network flow problems: sources and destinations are not limited to

at most one flow, and each flow must be assigned to a single path.

Subject to these constraints, the performance of a Clos network is

no longer equivalent to that of a macro-switch.

In this paper, we study the discrepancies between a Clos network

and amacro-switch in terms of throughput and fairness, considering

routing inside the network as a design variable. In this context,

we prove three fundamental results regarding the performance of

Clos networks. First, we show that even if routing could replicate

the macro-switch rates, imposing max-min fair rates halves the

throughput. Second, we prove that routing for max-min fairness

reduces themax-min fair rates of some flows by a factor of
1

𝑛 relative

to the macro-switch, where 𝑛 is the number of middle switches in

the network. Finally, we find that routing for maximum throughput

doubles the throughput but brings the max-min fair rates of some

flows to zero. These results call into question several common

assumptions about the design options for data-centers.
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1 INTRODUCTION
Many data-centers are architected following Clos networks [2, 16,

29, 30]. In a Clos network, each server is connected to a single top-

of-rack (ToR) switch, and each ToR switch is connected to multiple

middle switches, such that there are as many link-disjoint paths

from input to output ToR switches as there are middle switches [12].

Typically, each link has uniform capacity.

A basic property of Clos networks is their full bisection band-
width, meaning that the minimum capacity of a global cut (sepa-

rating all source-destination pairs) consisting of links inside the
network (between ToR and middle switches) is at least the mini-

mum capacity of a global cut consisting of links outside the network
(between servers and ToR switches). This property has two well-

known implications that make them an attractive design for a range

of use cases, including telephone networks and data-centers.

Demand satisfaction:When flows are splittable, in the sense

that they can be routed concurrently on possibly multiple source-

destination paths (and thus be modeled as classic network flow),
arbitrary flow demands (i.e., flow rates satisfying the capacities of
links outside the network) can be routed inside the network such

that the capacities of these links are satisfied [9]. Thus, the bottle-

neck of a flow is the link between its source and input switch, or

the link between its destination and output switch, such that the

inside of the network can be abstracted away from a performance

modeling standpoint.

Throughput maximization:When each source and each desti-

nation is limited to at most one flow (due to admission control, as in
early telephone networks), arbitrary flow demands can be routed

on link-disjoint paths such that the capacities inside the network

are also satisfied, and, if flows demands equal link capacities, then

the throughput across the network (i.e., the total rate over all flows)
is maximized [19].

However, a typical data-center does not meet the above premises

that guarantee demand satisfaction or throughput maximization [2,

16, 29, 30]. Instead: (1) flows are usually unsplittable, in the sense

that they must be routed on a single source-destination path, and

(2) flows are usually subject to congestion control, whereby the

network accepts all input flows (possibly multiple flows per source

and per destination) and imposes a max-min fair allocation [6, 28]

of the link capacities among the flow rates; a max-min allocation

maximizes in lexicographic order [13] the vector whose components

are the flow rates sorted from lowest to highest rate. Given these

discrepancies, the overarching question of this work is: How well
do Clos networks perform with respect to satisfying flow demands
and maximizing throughput given unsplittable flows and congestion
control?
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1.1 Research Questions
The standard abstraction for analyzing data-center performance

is amacro-switch [1, 3, 5, 8, 10, 20, 26].
1
A macro-switch is obtained

from a Clos network by replacing all middle switches by a com-

plete bipartite graph connecting input to output ToR switches with

infinite capacity links, thus emulating a single switch connecting

sources to destinations. The flow rates in a macro-switch match the

flow demands in the corresponding Clos network, and are restricted

only by the capacities of links outside the network.

Under admission control, if there is at most one flow per source

and per destination, and flows are transmitted at link capacities,

then the throughput across a macro-switch is maximized. However,

under congestion control, there are possibly multiple flows per

source and per destination, and flows are transmitted at max-min

fair rates. Thus, our first question concerns only a macro-switch

subject to congestion control: (Q1) What is the throughput lost,
if any, by the max-min fair allocation in a macro-switch
relative to themaximum throughput across themacro-switch
without max-min fair constraints?2

In a macro-switch, there is a unique routing, for there is a single
path between every source-destination pair. In contrast, in a Clos

network, there are possibly multiple routings, determined by the

source-destination path assigned to each flow. Therefore, flow rates

depend on both routing and congestion control: there is a possibly

different max-min fair allocation for each routing, such that chang-

ing the path assigned to some flow may affect the max-min fair

rate of every other flow, even the rates of flows that do not share

common links with that flow.

With splittable flows, a Clos network and a macro-switch are

equivalent, meaning that the divisibility of flows ensures that ar-

bitrary macro-switch rates can be replicated in the network. With

admission control, they are also equivalent, now meaning that the

link-disjoint routing of flows ensures that some maximum through-

put macro-switch rates can also be replicated in the network. How-

ever, with congestion control, it is not known if there are max-min

fair rates in a Clos network that replicate, either exactly or even

closely, the max-min fair macro-switch rates. Thus, our second

question is: (Q2) To what extent can max-min fair allocations
in a Clos network replicate the max-min fair allocation in
the corresponding macro-switch?

Many evaluations of data-center routing algorithms assume that

their primary objective ismaximizing throughput, such that fairness
is a secondary objective ensured by congestion control [17, 26,

31, 32]. As both throughput and fairness in a Clos network are

functions of the routing, we investigate a new angle of the classic

throughput-fairness trade-off: the effect of routing on throughput

and fairness when maximizing throughput while having congestion

control maintain fairness constraints at each routing. Specifically:

(Q3) If routing maximizes throughput, then how does the
max-min fair allocation in the network compare to that in
the corresponding macro-switch?

1
A macro-switch has several denominations in the networking literature, including

hose model [14], fully-non-blocking switch [3] and big-switch model [1].
2
The gap between the throughput of an allocation subject to fairness constraints and

the maximum throughput not subject to these constraints is known in the resource

allocation literature as the price of fairness [7].

1.2 Contributions
The main contribution of this paper is the characterization of the

impossibility of satisfying demands and maximizing throughput

in data-center Clos deployments subject to unsplittable flows and

max-min fair allocations at each routing via resultsR1 toR3, which
answer, respectively, questions Q1 through Q3.

(R1) Impossibility of maximizing throughput assuming
satisfiable demands: We show that the throughput of the max-

min fair allocation in a macro-switch can be less than the maximum

throughput across it (without max-main fair constraints).

Theorem 1.1. (Informal statement of Theorem 3.4) For every
macro-switch, the throughput of the max-min fair allocation is at
least half of the maximum throughput; this bound is tight.

While it is well-known that, in general, max-min fair allocations

do not maximize throughput [6, 24], it is surprising that, given the

simplicity of a macro-switch, up to half the maximum throughput

may be forfeited.

(R2) Impossibility of satisfying demands: Lexicographic (lex)
max-min fairness is the natural extension of max-min fairness from

fixed to variable routing: a lex-max-min fair allocationmaximizes in

lexicographic order the vectors corresponding to max-min fair

allocations for each routing over all routings [22]. We show that

routing in a Clos network does not always exactly replicate the

max-min fair macro-switch rates, and, moreover, it does not always

replicate them closely when optimizing lex-max-min fairness.

Theorem 1.2. (Informal statement of Theorem 4.3) For every Clos
network, there is a collection of flows such that the lex-max-min fair
rates of some flows are smaller than their max-min fair rates in the
macro-switch by a 1

𝑛 -factor, where 𝑛 is the number of middle switches.

In other words, with lex-max-min fair rates, which are the fairest

rates in a Clos network in amax-min sense, some flowsmay severely

decrease their max-min fair rates relative to the macro-switch.

(R3) Incongruence between maximizing throughput and
satisfying demands: A throughput-max-min fair allocation maxi-

mizes the throughput of themax-min fair allocation for each routing

over all routings. We show that the throughput of a throughput

max-min fair allocation in a Clos network can be greater than the

throughput of the max-min fair allocation in its macro-switch.

Theorem 1.3. (Informal statement of Theorem 5.4) For every Clos
network, the throughput of a throughput-max-min fair allocation is
at most twice that of the max-min fair allocation in its macro-switch;
this bound becomes tight as the number of middle switches increases.

This throughput increase, however, implies seriously reducing

some flow rates relative to its macro-switch; in particular, doubling

the throughput requires zeroing the rates of most flows.

1.3 Roadmap
In §2, we present a formal description of the problem setting. In

§3, we show the impossibility of maximizing throughput if demands

are assumed satisfiable and, in §4, the impossibility of satisfying

these demands. In §5, we show the incongruence between maximiz-

ing throughput and satisfying demands. In §6, we review related

work, and, in §7, we conclude the paper.
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2 PROBLEM SETTING
We formalize our model of data-center Clos deployments with

unsplittable flows subject to max-min fair rate allocations at each

routing. In §2.1, we describe Clos networks and their macro-switch

abstractions. In §2.2, we define max-min fair allocations and high-

light their dependence on routing. In §2.3, we introduce the routing

objectives considered in this paper.

2.1 Clos networks and macro-switches
Clos networks: A Clos network interconnects source servers to

destination servers via three stages of switches: input ToR switches,
middle switches, and output ToR switches. For simplicity, we assume

that the degree of each middle switch is twice that of each ToR

switch. The Clos network of size 𝑛, for some integer 𝑛 ≥ 1, denoted

by 𝐶𝑛 and depicted in Figure 1a for 𝑛 = 2, designates the directed

graph with the following node and link sets:

• Node set: There are 𝑛 middle switches, with the 𝑚’th middle

switch denoted by 𝑀𝑚 , 𝑚 ∈ [𝑛]. There are 2𝑛 input (output)

switches, with the 𝑖’th input (output) switch denoted by 𝐼𝑖 (𝑂𝑖 ),

𝑖 ∈ [2𝑛]. There are 2𝑛2 source (destination) servers, with the

𝑗 ’th source (destination) servers of the 𝑖’th input (output) switch

denoted by 𝑠
𝑗
𝑖
(𝑡
𝑗
𝑖
), 𝑖 ∈ [2𝑛] and 𝑗 ∈ [𝑛].3

• Link set: There is one link 𝐼𝑖𝑀𝑚 (𝑀𝑚𝑂𝑖 ), 𝑖 ∈ [2𝑛] and𝑚 ∈ [𝑛].
There is one link 𝑠

𝑗
𝑖
𝐼𝑖 (𝑂𝑖𝑡

𝑗
𝑖
), 𝑖 ∈ [2𝑛] and 𝑗 ∈ [𝑛].

In 𝐶𝑛 , there are 𝑛 paths between every source-destination pair,

each via a different middle switch. All links have unit capacity.

Macro-switches: The macro-switch abstraction of a Clos net-

work of size 𝑛, denoted by𝑀𝑆𝑛 and depicted in Figure 1b for 𝑛 = 2,

designates the directed graph obtained from the Clos network by

replacing all middle switches (and respective links) with the com-

plete bipartite graph whose start and end node sets are, respectively,

the input and output switch sets. In𝑀𝑆𝑛 , there is a single path be-

tween each source-destination pair. Links between servers and ToR

switches have unit capacity, and links between ToR switches have

infinite capacity. Therefore, the macro-switch emulates a single

switch connecting 2𝑛2 sources to 2𝑛2 destinations.

2.2 Routing and max-min fair allocations
Routing and allocations:A flow 𝑓 maps to a source-destination

pair (𝑠𝑓 , 𝑡𝑓 ); there may be multiple flows mapping to the same

source-destination pair. Given a collection 𝐹 of flows, a routing 𝑟 is
an assignment of each flow 𝑓 to an 𝑠𝑓 -𝑡𝑓 path, 𝑟 (𝑓 ). Given a routing
𝑟 for the collection 𝐹 of flows, an allocation 𝑎 is an assignment of

each flow 𝑓 to a non-negative rate 𝑎(𝑓 ). Let 𝑐 (𝑢, 𝑣) be the capacity
of a link (𝑢, 𝑣). We say that an allocation 𝑎 is feasible if for every
link the total rate over all flows traversing that link is at most the

link capacity: ∑︁
𝑓 ∈𝐹 :(𝑢,𝑣) ∈𝑟 (𝑓 )

𝑎(𝑓 ) ≤ 𝑐 (𝑢, 𝑣) for all links (𝑢, 𝑣).

The set of all feasible allocations is denoted by 𝐴. The throughput
of an allocation 𝑎, denoted by 𝑡 (𝑎), is the total rate over all flows.

3
Given two non-negative integers 𝑥 and 𝑦 such that 𝑥 ≤ 𝑦, the notation [𝑥, 𝑦 ]
denotes the set {𝑥, 𝑥 + 1, . . . , 𝑦}. If 𝑥 = 1, then the notation becomes [𝑦 ].
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Figure 1: A collection of flows in the Clos network for n = 2 and its
macro-switch abstraction. Circles symbolize servers, and squares
symbolize switches. The large colored box symbolizes the single
switch. Lines symbolize flows from source to destination, with num-
bers next to sources and destinations (e.g., ×3) indicating the number
of flows leaving those sources or entering those destinations.

Max-min fair allocations: Let 𝑎↑ be the sorted vector of an

allocation 𝑎 whose components are the rates sorted from lowest to

highest rate. Given two allocations 𝑎↑ and 𝑎′↑, we write 𝑎↑ ⪰ 𝑎′↑
if 𝑎↑ is greater than or equal to 𝑎′↑ in lexicographic order [13].

Definition 2.1 ([6, 28]). An allocation 𝑎 is max-min fair if: (1) 𝑎
is feasible; and (2) 𝑎↑ is maximum in lexicographic order over the

sorted vectors of all feasible allocations:

𝑎 ∈ 𝐴, and 𝑎↑ ⪰ 𝑎′↑ for all 𝑎′ ∈ 𝐴.

A max-min fair allocation can be found in polynomial time in

the number of flows and links by a water-filling algorithm [6, 28].

Bottleneck property: A well-known characterization of a max-

min fair allocation is given by the bottleneck property. We say that a

link (𝑢, 𝑣) traversed by a flow 𝑓 is a bottleneck for 𝑓 if: (1) the total

rate over all flows traversing (𝑢, 𝑣) equals the link capacity; and

(2) the rate of 𝑓 is maximum over those of all flows traversing (𝑢, 𝑣):∑︁
𝑓 ′∈𝐹 :(𝑢,𝑣) ∈𝑟 (𝑓 ′ )

𝑎(𝑓 ′) = 𝑐 (𝑢, 𝑣), and

𝑎(𝑓 ) ≥ 𝑎(𝑓 ′) for all 𝑓 ′ ∈ 𝐹 such that (𝑢, 𝑣) ∈ 𝑟 (𝑓 ′) .
A link may be a bottleneck for multiple flows, and a flow may

have multiple bottleneck links. While in a macro-switch a flow may

only be bottlenecked on links between servers and ToR switches,

in a Clos network it may also be bottlenecked on links between

ToR and middle switches.

Lemma 2.2 ([6, 28]). A feasible allocation is max-min fair if and
only if all flows have a bottleneck link.



PODC ’24, June 17–21, 2024, Nantes, France Miguel Alves Ferreira, Nirav Atre, Justine Sherry, and João Luís Sobrinho

The forthcoming example first instantiates the computation of

the max-min fair allocation in a macro-switch. Then, it demon-

strates that, when going from the macro-switch to the correspond-

ing Clos network, flows may transfer their bottleneck links from

links outside to links inside the network.

Example 2.3. Consider the collection of flows in the Clos network
for 𝑛 = 2 illustrated in Figure 1. There are three types of flows, each

identified with a different color in the figure:

• Type 1 (orange): There is one flow (𝑠2
1
, 𝑡2
1
), one flow (𝑠2

1
, 𝑡1
2
), and

one flow (𝑠2
1
, 𝑡2
2
).

• Type 2 (blue): There is one flow (𝑠𝑖
2
, 𝑡𝑖
2
), 𝑖 ∈ [2].

• Type 3 (green): There is one flow (𝑠1
1
, 𝑡1
1
).

In a macro-switch, there is a unique routing, implying that there

is a unique max-min fair allocation for each collection of flows.

In Figure 1b, we derive the max-min fair allocation in the macro-

switch. First, since 𝑠2
1
𝐼1 is traversed by the greatest number of flows,

each type 1 flow is assigned rate
1

3
and bottlenecked on 𝑠2

1
𝐼1. Second,

since the rate of the type 2 flow (𝑠1
2
, 𝑡1
2
) is only constrained by the

rate
1

3
that the type 1 flow (𝑠2

1
, 𝑡1
2
) consumes from𝑂2𝑡

1

2
, it is assigned

rate
2

3
and bottlenecked on 𝑂2𝑡

1

2
; likewise, the type 2 flow (𝑠2

2
, 𝑡2
2
)

is assigned rate
2

3
and bottlenecked on 𝑂2𝑡

2

2
. Finally, since the rate

of the type 3 flow is not constrained by the rates of other flows, it is

assigned rate 1 and bottlenecked on both 𝑠1
1
𝐼1 and𝑂1𝑡

1

1
. The sorted

vector of the max-min fair allocation is

[
1

3
, 1
3
, 1
3
, 2
3
, 2
3
, 1
]
.

In a Clos network, there are multiple routings, implying that

there are possibly multiple max-min fair allocation depending on

the routing for each collection of flows. In Figure 1a, we show a pos-

sible routing in the Clos network. First, suppose that the type 1 flow

(𝑠2
1
, 𝑡1
2
) is assigned to 𝑀1. Then, type 1 and type 2 flows keep the

same bottlenecks links that in the macro-switch, whereas the type

3 flow transfers its bottleneck to 𝐼1𝑀1; hence, the type 1 and type

2 flows uphold their macro-switch rates, while the type 3 flow de-

creases its rate to
2

3
. Second, suppose that the type 1 flow (𝑠2

1
, 𝑡1
2
) is

re-assigned to𝑀2. Then, the type 3 flow keeps the same bottleneck

links that in themacro-switch, thus increasing its rate back to 1; con-

trarily, the type 2 flow (𝑠2
2
, 𝑡2
2
) now transfers its bottleneck to𝑀2𝑂2,

thus decreasing its rate to
1

3
. The sorted vector

[
1

3
, 1
3
, 1
3
, 2
3
, 2
3
, 2
3

]
of the max-min fair allocation for the first routing is greater in

lexicographic order than the sorted vector

[
1

3
, 1
3
, 1
3
, 1
3
, 2
3
, 1
]
for the

second routing; the sorted vector of the max-min fair allocation in

the macro-switch is greater than the latter two.

2.3 Routing objectives
Lex-max-min fairness: The first objective, considered in §4, is

to maximize in lexicographic order the sorted vectors of the max-

min fair allocations in a Clos network [22]. Given a collection of

flows in a Clos network 𝐶𝑛 , denote by 𝑅 the set of all routings in

𝐶𝑛 , and by 𝑎MmF

𝑟 the max-min fair allocation for routing 𝑟 ∈ 𝑅.

Definition 2.4. A lex-max-min fair allocation, denoted by 𝑎L-MmF
,

designates a max-min fair allocation for some routing such that

𝑎L-MmF↑ is maximum in lexicographic order over the sorted vectors

of the max-min fair allocations for all routings:
4

𝑎L-MmF = 𝑎MmF

𝑟 for some 𝑟 ∈ 𝑅, and

𝑎L-MmF↑ ⪰ 𝑎MmF

𝑟 ↑ for all 𝑟 ∈ 𝑅.

Importantly, the sorted vector of the max-min fair allocation in a

macro-switch is greater than or equal to (in lexicographic order) that

of a lex max-min fair allocation in the corresponding Clos network.

This assertion follows from two facts: (1) if an allocation in a Clos

network is feasible, then it is also feasible in its macro-switch (the

easy proof is omitted); and (2) in a macro-switch, the sorted vector

of the max-min fair allocation is greater than or equal to that of

every feasible allocation. Since a lex max-min fair allocation in a

Clos network is feasible, the conclusion follows.

Maximum throughput: The second objective, considered in

§5, is to maximize the throughput of the max-min fair allocations

in a Clos network.

Definition 2.5. A throughput-max-min fair allocation, denoted by
𝑎T-MmF

, designates a max-min fair allocation for some routing such

that 𝑡 (𝑎T-MmF) is maximum over the throughputs of the max-min

fair allocations for all routings:

𝑎T-MmF = 𝑎MmF

𝑟 for some 𝑟 ∈ 𝑅, and

𝑡 (𝑎T-MmF) ≥ 𝑡 (𝑎MmF

𝑟 ) for all 𝑟 ∈ 𝑅.

Denote 𝑡 (𝑎T-MmF) by𝑇T-MmF
. In contrast to the first objective, in

§5 we show that the throughput of the max-min fair allocation in a

macro-switch can be smaller than the throughput of a throughput-

max-min fair allocation in the corresponding Clos network.

3 IMPOSSIBILITY OF MAXIMIZING THROUG-
HPUT ASSUMING SATISFIABLE DEMANDS

We show that the factor of throughput lost by the max-min fair

allocation in a macro-switch relative to the maximum throughput

across it (without max-min fair constraints) is at most
1

2
, and that

this bound is tight.

Maximum throughput across a macro-switch:We make use

of the well-known characterization of the maximum throughput

across a macro-switch.

Definition 3.1. An allocation 𝑎 is maximum throughput if: (1) 𝑎
is feasible; and (2) 𝑡 (𝑎) is maximum over the throughputs of all

feasible allocations:

𝑎 ∈ 𝐴, and 𝑡 (𝑎) ≥ 𝑡 (𝑎′) for all 𝑎′ ∈ 𝐴.

Let 𝑎MmF
the max-min fair allocation in a macro-switch 𝑀𝑆𝑛 ,

and 𝑎MT
be a maximum throughput allocation in 𝑀𝑆𝑛 . Denote

𝑡 (𝑎MmF) by 𝑇MmF
, and, likewise, 𝑡 (𝑎MT) by 𝑇MT

; we call 𝑇MT
the

maximum throughput across the macro-switch. By the definition of

maximum throughput, we write 𝑇MT ≥ 𝑇MmF
.

The lemma below specifies a maximum throughput allocation in

terms of a bipartite maximum matching. The bipartite multigraph

pertaining to a collection of flows in themacro-switch𝑀𝑆𝑛 , denoted

4
The notation for allocations reads as follows. In the superscript, prefixes ‘L-’ and

‘T-’ indicate the routing objective, and suffixes ‘MmF’ and ‘MT’ indicate whether or

not max-min fair constraints are imposed at each routing. The absence of subscript

denotes an optimal allocation for some routing objective, or a macro-switch allocation.
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(b) The max-min fair allocation in𝑀𝑆1.

Figure 2: Instantiation of the adversarial flows underlying Theo-
rem 3.4 for 𝑛=1; in the proof, there are 𝑘 type 2 (blue) flows.

by𝐺𝑀𝑆
, is the graph whose sets of start and end nodes are, respec-

tively, the sets of sources and destinations in the macro-switch, and

whose collection of links is the collection of flows.

Lemma 3.2 (Folklore). Consider a macro-switch 𝑀𝑆𝑛 , for an
arbitrary integer 𝑛 ≥ 1. Let 𝐹 ′ be some maximum matching in graph
𝐺𝑀𝑆 . For every collection 𝐹 of flows in 𝑀𝑆𝑛 , there is a maximum
throughput allocation 𝑎MT such that:

𝑎MT (𝑓 ) =
{
1, if 𝑓 ∈ 𝐹 ′,

0, otherwise,
for all 𝑓 ∈ 𝐹 .

Therefore, 𝑇MT = |𝐹 ′ |.

Throughput decrease by introducing max-min fair rate
constraints: The next example shows that the throughput of the

max-min fair allocation for a given collection of flows in a macro-

switch is smaller than the maximum throughput by a
3

4
-factor. The

construction of the example leads to the tightness of the impossi-

bility.

Example 3.3. Consider the collection of flows in the macro-

switch for 𝑛 = 1 illustrated in Figure 2. There are two types of

flows, each identified with a different color in the figure:

• Type 1 (orange): There is one flow (𝑠1
1
, 𝑡1
1
) and one flow (𝑠1

2
, 𝑡1
2
).

• Type 2 (blue): There is one flow (𝑠1
2
, 𝑡1
1
).

In Figure 2a, in the maximum throughput allocation, by Lemma

3.2, both type 1 flows are assigned rate 1, and the type 2 flow is

assigned rate 0, thus leading to throughput 2. From the viewpoint of

admission control, both type 1 flows are accepted, and transmitted

at link capacity, while the type 2 flow is rejected.

In Figure 2b, in the max-min fair allocation, all flows are assigned

rate
1

2
, such that𝑂1𝑡

1

1
is a bottleneck for the type 1 flow (𝑠1

1
, 𝑡1
1
) and

the type 2 flow, and 𝑠1
2
𝐼2 is a bottleneck for the type 1 flow (𝑠1

2
, 𝑡1
2
)

and (again) the type 2 flow, thus leading to throughput
3

2
. From the

viewpoint of congestion control, the type 2 flow claims a portion

of the capacity of both 𝑂1𝑡
1

1
and 𝑠1

2
𝐼2; hence, it restricts the rates of

both type 1 flows even though they are unrestricted elsewhere in the

macro-switch, such that a
1

4
-fraction of the maximum throughput

across the macro-switch is lost.

The forthcoming theorem establishes an upper bound of
1

2
on

the fraction of throughput lost by the max-min fair allocation in a

macro-switch relative to the maximum throughput across it, and

generalizes the above example to show that this bound is tight.

Theorem 3.4. Consider a macro-switch 𝑀𝑆𝑛 , for an arbitrary
integer 𝑛 ≥ 1. For every collection of flows in 𝑀𝑆𝑛 , it holds that
𝑇MmF ≥ 1

2
𝑇MT. Moreover, there is a collection of flows in𝑀𝑆𝑛 such

that 𝑇MmF ≤ 1

2
(1 + 𝜖)𝑇MT, for arbitrary small 𝜖 .

Proof. First, we show that for every collection 𝐹 of flows in𝑀𝑆𝑛
it holds that 𝑇MmF ≥ 1

2
𝑇MT

. We make use of the characterizations

of max-min fair and maximum throughput allocations provided by

Lemmas 2.2 and 3.2, respectively. Denote by 𝑆𝑛 and 𝑇𝑛 the sets of

sources and destinations in𝑀𝑆𝑛 , respectively. For each source 𝑠 , let

𝜏𝑠 be the total max-min fair rate over all flows 𝑓 ∈ 𝐹 such that 𝑠𝑓 = 𝑠

and, likewise, for each destination 𝑡 , let 𝜏𝑡 be the total max-min fair

rate over all flows 𝑓 ∈ 𝐹 such that 𝑡𝑓 = 𝑡 :

𝜏𝑠 =
∑︁

𝑓 ∈𝐹 :𝑠𝑓 =𝑠
𝑎MmF (𝑓 ), and 𝜏𝑡 =

∑︁
𝑓 ∈𝐹 :𝑡𝑓 =𝑡

𝑎MmF (𝑓 ).

We write

𝑇MmF =
∑︁
𝑠∈𝑆𝑛

𝜏𝑠 =
∑︁
𝑡 ∈𝑇𝑛

𝜏𝑡 .

We deduce two facts. Let 𝐹 ′ be a maximum matching in 𝐺𝑀𝑆
.

First, since for each source 𝑠 there is at most one flow 𝑓 ∈ 𝐹 ′ such
that 𝑠𝑓 = 𝑠 , and, likewise, for each destination 𝑡 there is at most

one flow 𝑓 ∈ 𝐹 ′ such that 𝑡𝑓 = 𝑡 , we deduce that∑︁
𝑠∈𝑆𝑛

𝜏𝑠 ≥
∑︁
𝑓 ∈𝐹 ′

𝜏𝑠𝑓 , and

∑︁
𝑡 ∈𝑇𝑛

𝜏𝑡 ≥
∑︁
𝑓 ∈𝐹 ′

𝜏𝑡𝑓 .

Let 𝐼 (𝑠 ) be the input switch of source 𝑠 , and, likewise, let 𝑂 (𝑡 )
be the output switch of destination 𝑡 . Second, from Lemma 2.2, we

know that 𝑠𝑓 𝐼 (𝑠𝑓 ) , or 𝑂 (𝑡𝑓 )𝑡𝑓 , are bottleneck links for 𝑓 , for all

flows 𝑓 ∈ 𝐹 ′; hence, since the total rate over a bottleneck link is 1,

we have 𝜏𝑠𝑓 + 𝜏𝑡𝑓 ≥ 1, for all flows 𝑓 ∈ 𝐹 ′. Summing over all flows

𝑓 ∈ 𝐹 ′, we deduce that∑︁
𝑓 ∈𝐹 ′

(
𝜏𝑠𝑓 + 𝜏𝑡𝑓

)
≥

��𝐹 ′�� .
From the previous facts, we write

𝑇MmF ≥ max
©­«
∑︁
𝑓 ∈𝐹 ′

𝜏𝑠𝑓 ,
∑︁
𝑓 ∈𝐹 ′

𝜏𝑡𝑓
ª®¬

≥ 1

2

∑︁
𝑓 ∈𝐹 ′

(
𝜏𝑠𝑓 + 𝜏𝑡𝑓

)
≥ 1

2

��𝐹 ′�� .
Finally, from Lemma 3.2, we have |𝐹 ′ | = 𝑇MT

, to conclude that

𝑇MmF ≥ 1

2
𝑇MT

.

Second, we show that there is an adversarial collection of flows

in𝑀𝑆𝑛 such that 𝑇MmF ≤ 1

2
(1 + 𝜖)𝑇MT

, for arbitrary small 𝜖 . The

adversarial flows are obtained from those designed for Example 3.3,

and illustrated in Figure 2a for 𝑛 = 1, by replacing the type 2 flow

with 𝑘 type 2 flows between the same source-destination pair, for

some integer 𝑘 ≥ 1. Therefore, there are two types of flows:
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• Type 1: There is one flow (𝑠1
1
, 𝑡1
1
) and one flow (𝑠1

2
, 𝑡1
2
).

• Type 2: There are 𝑘 flows (𝑠1
2
, 𝑡1
1
).

In the maximum throughput allocation, both type 1 flows are

assigned rate 1, and all 𝑘 type 2 flows are assigned rate 0, such that

𝑇MT = 2. In the max-min fair allocation, all flows are assigned rate

1

𝑘+1 , such that 𝑇MmF = 1 + 1

𝑘+1 . We conclude that

𝑇MmF ≤ 1

2

(1 + 𝜖)𝑇MT,

where 𝜖 = 1

𝑘+1 , which tends to 0 as 𝑘 tends to infinity. □

4 IMPOSSIBILITY OF SATISFYING DEMANDS
We establish the impossibility of the lex-max-min fair allocation

in a Clos network closely replicating the max-min fair allocation in

its macro-switch. In favor of readability, we divide this result into

two parts, the latter superseding the former. In §4.1, we show that

there is a collection of flows for which the max-min fair allocation

in a macro-switch is greater (in lexicographic order) than the lex-

max-min fair allocation. In §4.2, we show that there is a collection

of flows for which the lex-max-min fair rates of some flows are

smaller than their max-min fair rates in the macro-switch by a

1

𝑛 -factor, where 𝑛 is the size of the network.

4.1 Lex-max-min fairness does not ensure the
macro-switch abstraction

Given a collection of flows, we say that a feasible allocation in a

macro-switch can be replicated in the corresponding Clos network

if, assuming that each flow is offered to the data-center with its

macro-switch rate, there is a feasible routing (i.e., a routing in which

the capacities of all links are satisfied). The next example shows that

the max-min fair allocation of a given collection of flows in a macro-

switch cannot be replicated in the corresponding Clos network;

thus, it shows that, for all max-min fair allocations in the network,

the rate of some flow is smaller than its macro-switch rate, implying

that the max-min fair allocation in the macro-switch is greater than

a lex max-min fair allocation. The construction of the example leads

to the first part of the impossibility; a slight modification, and a

more nuanced argument, leads to the second part.

Example 4.1. Consider the collection of flows in the macro-

switch for 𝑛 = 3 illustrated in Figure 3. (The figure shows only

the first four input and the first four output switches.) There are

three types of flows, each identified with a different color:

• Type 1 flows (orange): There is one flow (𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
), 𝑖 ∈ [𝑛] and

𝑗 ∈ [2, 𝑛].
• Type 2.a flows (blue): There is one flow (𝑠1

𝑖
, 𝑡1
𝑖
), 𝑖 ∈ [𝑛].

• Type 2.b flows (blue): There is one flow (𝑠1
𝑖
, 𝑡

𝑗

𝑛+1), 𝑖 ∈ [𝑛] and
𝑗 ∈ [𝑛 − 1].

• Type 3 flow (green): There is one flow (𝑠𝑛
𝑛+1, 𝑡

𝑛
𝑛+1).

Type 2.b flows are placed such that there are three flows entering

each of the first two destinations of𝑂4. In Figure 3a, in the max-min

fair allocation in the macro-switch, all type 1 and the type 3 flows

are assigned rate 1, and all type 2 flows are assigned rate
1

3
.

In Figure 3b, assume that each flow is offered to the data-center

with its macro-switch max-min fair rate. We show that there is no

feasible routing. Let the available capacity of a link be the difference
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(b) The Clos network C3.

Figure 3: Instantiation of the adversarial flows underlying Theo-
rems 4.2 and 4.3 for n = 3. While in the proof of Theorem 4.2 there
is one type 1 (orange) flow between each corresponding source-
destination pair, in that of Theorem 4.3 there are 𝑛 + 1 type 1 flows.

between the link unit capacity and the total rate over all flows that

have already been assigned a path traversing that link.

We derive two conditions that all possibly feasible routings met.

(1) Since the rate of each type 1 flow is 1, the type 1 flows leaving 𝐼𝑖
are assigned to different middle switches; thus, we deduce that all

type 2 flows leaving 𝐼𝑖 are assigned to the same middle switch, for

all 𝑖 ∈ [3]. (2) Since the total rate over all type 2 flows leaving 𝐼𝑖 and
entering𝑂4 is

2

3
, and, by the first condition, all type 2 flows leaving

𝐼𝑖 are assigned to the same middle switch, we deduce that the set

of type 2 flows leaving 𝐼𝑖 is assigned to a different middle switch

than the set of type 2 flows leaving 𝐼𝑖′ , for all 𝑖, 𝑖
′ ∈ [3], 𝑖 ≠ 𝑖′.

Therefore, without loss of generality, we assume that the type 1

flow (𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
) is assigned to 𝑀𝑘+1, where 𝑘 = 𝑖 + 𝑗 − 2 (mod 3),

𝑗 ∈ [2, 3], and that the set of type 2 flows leaving 𝐼𝑖 is assigned to

𝑀𝑖 , 𝑖 ∈ [3]. (See Figure 3b.) Finally, since the available capacity at

𝑀𝑚𝑂4 is
1

3
, and the rate of the type 3 flow is 1, we conclude that

the assignment of the type 3 flow to 𝑀𝑚 violates the capacity of

𝑀𝑚𝑂4, for all𝑚 ∈ [3], which is what we wanted to show.

The theorem below generalizes the example above to a Clos

network of arbitrary large size.

Theorem 4.2. Consider a Clos network𝐶𝑛 , for an arbitrary integer
𝑛 ≥ 3. There is a collection of flows in𝐶𝑛 such that𝑎MmF↑ ≻ 𝑎L-MmF↑.

The proof of the theorem corresponds exactly to the construction

and argument of the example by interpreting 𝑛 as the size of the

Clos network, and is not repeated. We remark that this part of the

impossibility is not entirely new: prior work on multi-rate Clos

networks showed that, for every Clos network, there is a collection
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of flows for which some feasible macro-switch rates, not necessarily

max-min fair, cannot be replicated in the network [11]; in contrast,

the next part of the impossibility is fundamentally new.

4.2 Lex-max-min fairness leads to starvation
Since both a lex-max-min fair allocation in a Clos network and

the max-min fair allocation in its macro-switch optimize allocations

in lexicographic order, it would be expected that the lex-max-min

fair rate of each flow was less than its macro-switch rate by at most

some constant factor. The next theorem refutes this expectation.

Theorem 4.3. Consider a Clos network𝐶𝑛 , for an arbitrary integer
𝑛 ≥ 3. There is a collection 𝐹 of flows in 𝐶𝑛 such that 𝑎L-MmF (𝑓 ) =
1

𝑛𝑎
MmF (𝑓 ), for some flow 𝑓 ∈ 𝐹 .

Proof details of Theorem 4.3:We assume a Clos network𝐶𝑛 of

size 𝑛, for some integer 𝑛 ≥ 3. We show that there is an adversarial

collection of flows in 𝐶𝑛 such that the max-min fair rate in𝑀𝑆𝑛 of

a specific flow is 1, whereas its lex-max-min fair rate in 𝐶𝑛 is
1

𝑛 .

We describe a collection of flows that we showmeets the require-

ments. The adversarial flows are obtained from those designed for

Theorem 4.2, and illustrated in Figure 3a for 𝑛 = 3, by replacing

each type 1 flow between every source-destination pair with 𝑛 + 1

type 1 flows between that pair. Thus, there are three types of flows:

• Type 1 flows: There are 𝑛+1 flow (𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
), 𝑖 ∈ [𝑛] and 𝑗 ∈ [2, 𝑛].

• Type 2.a flows: There is one flow (𝑠1
𝑖
, 𝑡1
𝑖
), 𝑖 ∈ [𝑛].

• Type 2.b flows: There is one flow (𝑠1
𝑖
, 𝑡

𝑗

𝑛+1), 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑛 − 1].
• Type 3 flow: There is one flow (𝑠𝑛

𝑛+1, 𝑡
𝑛
𝑛+1).

The key idea behind the adversarial flows is that, given that

not all flows can uphold their macro-switch rates, lex max-min

fairness prioritizes upholding the lower macro-switch rates of type

1 and type 2 flows over the higher macro-switch rate of the type

3 flow. In detail, if we consider only type 1 and type 2 flows, then

their network rates are upper bounded in lexicographic order by

their macro-switch rates; thus, if the macro-switch rates of type 1

and type 2 flows can be upheld, then, provided that the network

rate of the type 3 flow exceeds them, their lex max-min fair rates

match their macro-switch rates. However, similarly to the proof of

Theorem 4.2, the macro-switch rates of type 1 and type 2 flows are

incompatible, in the sense that, for each input switch, upholding

their rates implies no type 1 sharing a common link with a type

2 flow. Therefore, all type 2 flows leaving that input switch are

assigned to the same middle switch, with a different middle switch

for each input switch; thus, the type 2 flows entering 𝑂𝑛+1 are

evenly divided over all middle switches. Consequently, the available

capacity at each link entering𝑂𝑛+1 implies that the rate of the type

3 flow decreases to the rate of the type 2 flows.

We evaluate the max-min fair allocation in𝑀𝑆𝑛 , and a lex max-

min fair allocation in 𝐶𝑛 , of the adversarial flows.

Lemma 4.4. In the max-min fair allocation in𝑀𝑆𝑛 for the adver-
sarial flows: (1) all type 1 flows are assigned rate 1

𝑛+1 ; (2) all type 2
flows are assigned rate 1

𝑛 ; and (3) the type 3 flow is assigned rate 1.

The proof of the lemma follows from the routine application of

the bottleneck property to the posited max-min fair allocation, and

is not presented. Intuitively, for each type of flow, a flow of that

type does not share links with flows of other types, so that their

rates are independent. Therefore, since each type 1 flow shares both

its link with 𝑛 other type 1 flows, it is assigned rate
1

𝑛+1 ; since each
type 2 flow shares both its link with 𝑛 − 1 other type 2 flows, it is

assigned rate
1

𝑛 ; and since the type 3 flow does not share its links

with other flows, it is assigned rate 1.

The evaluation of a lex max-min fair allocation requires the claim

below, which clarifies the incompatibility between themacro-switch

rates of type 1 and type 2 flows.

Claim 4.5. Consider the collection of flows in𝑀𝑆𝑛 consisting only
of the adversarial flows of type 1 and 2. Assume that type 1 and type 2
flows are offered to the data-center with rates 1

𝑛+1 and 1

𝑛 , respectively.
For all feasible routings, the following conditions hold:

(1) The number of type 1 and type 2 flows that leave 𝐼𝑖 and are
assigned to𝑀𝑚 is, respectively, 0 and 𝑛, or 𝑛+1 and 0, for all
𝑖,𝑚 ∈ [𝑛]; the assignment of type 1 flows to middle switches
is independent of the sources of these flows.

(2) The number of type 2.b flows that are assigned to𝑀𝑚 is 𝑛−1,
for all𝑚 ∈ [𝑛].

Proof. First, we show that the first condition is met. Let 𝑥𝑚
𝑖

and

𝑦𝑚
𝑖

be, respectively, the number of type 1 and 2 flows that leave 𝐼𝑖
and are assigned to𝑀𝑚 , for 𝑖,𝑚 ∈ [𝑛]. Since the total rate over all
type 1 and type 2 flows that leave 𝐼𝑖 is 𝑛, and the capacity of 𝐼𝑖𝑀𝑚

is 1, we write

𝑥𝑚
𝑖

𝑛 + 1

+
𝑦𝑚
𝑖

𝑛
= 1 ⇔ 𝑥𝑚𝑖 =

(𝑛 − 𝑦𝑚
𝑖
) (𝑛 + 1)
𝑛

, (1)

where 𝑥𝑚
𝑖

= [0, 𝑛 + 1] and 𝑦𝑚
𝑖

= [0, 𝑛], to deduce that 𝑥𝑚
𝑖

is an

integer exactly in case (𝑛 − 𝑦𝑚
𝑖
) (𝑛 + 1) is divisible by 𝑛. From the

fact that the least common multiple between 𝑛 and 𝑛 + 1 is 𝑛(𝑛 + 1)
we conclude that the only pairs of integer solutions to Equation 1

are (𝑥𝑚
𝑖
, 𝑦𝑚

𝑖
) = (0, 𝑛) and (𝑥𝑚

𝑖
, 𝑦𝑚

𝑖
) = (𝑛 + 1, 0).

Second, we show that violating the second constraint implies

violating the capacity of some link, thereby concluding that the

second condition is also met. From the first constraint, the number

of type 2.b flows that leave 𝐼𝑖 , and are assigned to𝑀𝑚 , is either 0 or

𝑛−1, for all 𝑖,𝑚 ∈ [𝑛]. Suppose that there are 𝑖, 𝑖′ ∈ [𝑛], 𝑖 ≠ 𝑖′, such
that the number of type 2.b flows that leave 𝐼𝑖 and are assigned to

𝑀𝑚 is 𝑛 − 1, and that the number of type 2.b flows that leave 𝐼𝑖′

and are assigned to𝑀𝑚 is also 𝑛 − 1, for some𝑚 ∈ [𝑛]. Then, the
total rate over all flows that traverse𝑀𝑚𝑂𝑛+1 is at least 2(1 − 1

𝑛 ),
which violates the capacity of𝑀𝑚𝑂𝑛+1. □

Lemma 4.6. In a lex max-min fair allocation in 𝐶𝑛 of the adver-
sarial flows: (1) all type 1 flows are assigned rate 1

𝑛+1 ; (2) all type 2
flows are assigned rate 1

𝑛 ; and (3) the type 3 flow is assigned rate 1

𝑛 .

Proof. The proof is composed of two steps. The first step shows

that the posited lex-max-min fair allocation is the max-min fair

allocation for some routing; the second step shows that it is max-

imum in lexicographic order over all possible routings. Let 𝑎∗ be
the posited lex max-min fair allocation in 𝐶𝑛 .

Step 1: There is a routing 𝑟 ∈ 𝑅 such that 𝑎∗ = 𝑎MmF
𝑟 . We claim

that the routing described below, and illustrated in Figure 3b for

𝑛 = 3, meets the requirements:
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• All 𝑛 + 1 type 1 flows (𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
) are assigned to 𝑀𝑘+1, where 𝑘 =

𝑖 + 𝑗 − 2 (mod 𝑛), 𝑖 ∈ [𝑛] and 𝑗 ∈ [2, 𝑛].
• The type 2.a flow (𝑠1

𝑖
, 𝑡1
𝑖
) is assigned to𝑀𝑖 , 𝑖 ∈ [𝑛].

• The type 2.b flow (𝑠1
𝑖
, 𝑡

𝑗
𝑖
) is assigned to 𝑀𝑖 , 𝑖 ∈ [𝑛] and 𝑗 ∈

[𝑛 − 1].
• The type 3 flow (𝑠𝑛

𝑛+1, 𝑡
𝑛
𝑛+1) is assigned to𝑀𝑛 .

The proof of the claim follows again from the routine application

of the bottleneck property to the posited lex max-min fair allocation

for this routing, and is also not presented. Intuitively, since all type

1 and type 2 flows share their links inside the network with no

more flows than they share their links outside the network, their

bottleneck links in the macro-switch are also bottlenecks links in

the Clos network, such that their network rates match their macro-

switch rates. In contrast, since the type 3 flow shares𝑀𝑛𝑂𝑛+1 with
𝑛−1 type 2 flows, its bottleneck link in the Clos network is𝑀𝑛𝑂𝑛+1,
such that its network rate decreases to

1

𝑛 .

Step 2: For all routings 𝑟 ∈ 𝑅, we have 𝑎∗↑ ⪰ 𝑎MmF
𝑟 ↑. We show

that for all routings 𝑟 that increase the max-min fair rate of a type

1 flow above
1

𝑛+1 , or increase the max-min fair rate of a type 2 flow

above
1

𝑛 , or increase the max-min fair rate of a type 3 flow above

1

𝑛 , we have 𝑎∗↑ ⪰ 𝑎MmF

𝑟 ↑. We divide the proof into two cases.

Case 1: We show that if a routing 𝑟 increases the rate of a type 1

flow above
1

𝑛+1 , then it decreases the rate of another type 1 flow

below
1

𝑛+1 , and that, likewise, if a routing 𝑟 increases the rate of a

type 2 flow above
1

𝑛 , then it decreases the rate of another type 2

flow below
1

𝑛 . We conclude that 𝑎∗↑ ≻ 𝑎MmF

𝑟 ↑, since each increase

is obtained at the cost of decreasing a flow of equal rate.

A first property of the adversarial flows is that each type 1 flow

leaving 𝑠
𝑗
𝑖
shares 𝑠

𝑗
𝑖
𝐼𝑖 with 𝑛 other type 1 flows leaving 𝑠

𝑗
𝑖
, for all

𝑖 ∈ [𝑛] and 𝑗 ∈ [2, 𝑛], and that, likewise, each type 2 flow leaving

𝑠1
𝑖
shares 𝑠1

𝑖
𝐼𝑖 with 𝑛−1 other type 2 flows leaving 𝑠1𝑖 , for all 𝑖 ∈ [𝑛].

Thus, if the rate of a type 1 flow leaving 𝑠
𝑗
𝑖
is greater than

1

𝑛+1 ,

then the capacity of 𝑠
𝑗
𝑖
𝐼𝑖 implies that the rate of another type 1 flow

leaving 𝑠
𝑗
𝑖
is smaller than

1

𝑛+1 ; likewise, if the rate of a type 2 flow
leaving 𝑠1

𝑖
is greater than

1

𝑛 , then the capacity of 𝑠1
𝑖
𝐼𝑖 implies that

the rate of another type 2 flow leaving 𝑠1
𝑖
is smaller than

1

𝑛 .

Case 2: We show that if a routing 𝑟 increases the rate of a type

3 flow above
1

𝑛 , then it decreases the rate of a type 1 flow below

1

𝑛+1 , or decreases the rate of a type 2 flow below
1

𝑛 . We conclude

that 𝑎∗↑ ≻ 𝑎MmF

𝑟 ↑, since the increase is obtained at the cost of

decreasing flows of no greater rate.

A second property of the adversarial flows is that, if the rates of

type 1 and 2 flows are, respectively,
1

𝑛+1 and
1

𝑛 , then, ommiting of

the rate of the type 3 flow, the total rate over all type 2.b flows that

traverse 𝑀𝑚𝑂𝑛+1 is 1 − 1

𝑛 , for all𝑚 ∈ [𝑛]; this property follows

from Claim 4.5. Thus, if the rate of the type 3 flow is greater than
1

𝑛 ,

then there is a type 1 flow with rate different from
1

𝑛+1 , or a type
2 with rate different from

1

𝑛 . In the first event, we conclude that

the rate of this type 1 flow is smaller than
1

𝑛+1 , or Case 1 implies

there is another type 1 flow with rate smaller than
1

𝑛+1 . Likewise,
in the second event, we conclude that the rate of this type 2 flow

is smaller
1

𝑛 , or Case 1 again implies there is another type 2 flow

with rate smaller than
1

𝑛 . □

Proof of Theorem 4.3. We show that the adversarial collection

of flows in 𝐶𝑛 meets the requirements. From Lemma 4.4, the max-

min fair rate in𝑀𝑆𝑛 of the type 3 flow is 1, and, from Lemma 4.6,

the lex max-min fair rate in 𝐶𝑛 of the type 3 flow is
1

𝑛 , yielding a

1

𝑛 -factor decrease of its rate. □

5 INCONGRUENCE BETWEEN MAXIMIZING
THROUGHPUT AND SATISFYING DEMANDS

We show that the factor of throughput gained by a throughput-

max-min fair allocation in a Clos network relative to the max-min

fair allocation in its macro-switch is at most 2, and that this bound

becomes tight as the network size increases, with tightness achieved

at the cost of canceling out the rates of most flows.

Maximum throughput across a Clos network:Webuild upon

the well-known characterization of maximum throughput across a

Clos network (without max-min fair constraints at each routing).

Let 𝑎MT

𝑟 be a maximum throughput allocation for a routing 𝑟 ∈ 𝑅.

Definition 5.1. A throughput-maximum throughput allocation,
denoted by 𝑎T-MT

, designates a maximum throughput allocation for

some routing such that 𝑡 (𝑎T-MT) is maximum over the throughputs

of a maximum throughput allocation for all routings:

𝑎T-MT = 𝑎MT

𝑟 for some 𝑟 ∈ 𝑅, and

𝑡 (𝑎T-MT) ≥ 𝑡 (𝑎MT

𝑟 ) for all 𝑟 ∈ 𝑅.

Denote 𝑡 (𝑎T-MT) by𝑇T-MT
; we call𝑇T-MT

themaximum through-
put across the Clos network. Since every feasible allocation in a Clos

network is also feasible in its macro-switch, we write𝑇MT ≥ 𝑇T-MT
.

The lemma below establishes the equivalence between the maxi-

mum throughput across a macro-switch and across the correspond-

ing Clos network, meaning that some maximum throughput alloca-

tions in the macro-switch can be replicated in the network.

Lemma 5.2 (Folklore). Consider a Clos network 𝐶𝑛 , for an ar-
bitrary integer 𝑛 ≥ 1. For every collection of flows in 𝐶𝑛 , there is
a maximum throughput allocation 𝑎MT in 𝑀𝑆𝑛 and a throughput-
maximum throughput allocation 𝑎T-MT in𝐶𝑛 such that 𝑎MT = 𝑎T-MT.
Therefore, 𝑇MT = 𝑇 T-MT.

The bipartite multigraph pertaining to a collection of flows in the

Clos network𝐶𝑛 , denoted by𝐺
𝐶
, is the graphwhose sets of start and

end nodes are, respectively, the sets of input and output switches

in the network, and whose collection of links is the collection of

flows identified by their input-output switch pairs. The proof of the

lemma introduces the correspondence between a 𝑛-link coloring in

𝐺𝐶
and a link-disjoint routing in 𝐶𝑛 .

5

Throughput increase by sacrificing max-min fair rate con-
straints: The heart of this section is a simple new algorithm, called

Doom-Switch algorithm and formalized in Algorithm 1, for approx-

imating a throughput-max-min fair allocation in a Clos network.

The algorithm executes two steps: (1) It computes a sub-collection of

5
We recall that Konig’s link coloring theorem [23] states that if the maximum degree

over all nodes of a bipartite multigraph is𝑛, then the graph has an𝑛-link coloring. If the

bipartite multigraph pertaining to a collection of flows in a Clos network has degree at

most the number 𝑛 of middle switches, then Konig’s link coloring theorem establishes

a correspondence between an 𝑛-link coloring in the graph and a link-disjoint routing

in the network, which equates to associating each of the 𝑛 colors with each of the 𝑛

middle switches, and assigning each flow to the corresponding middle switch.
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the flows that induces maximum throughput if assigned rate 1, and

a link-disjoint routing for these flows, and assigns them accordingly

(lines 1-2). (2) It assigns all remaining flows to a common middle

switch (line 3). Thus, it perverts the max-min fair constraints by

decreasing the rates of the latter flows relative to the macro-switch

to the increase of the former flows.

Algorithm 1 An algorithm that given a collection 𝐹 of flows in a

Clos network 𝐶𝑛 finds a routing for which the max-min fair alloca-

tion approximates a throughput-max-min fair allocation in 𝐶𝑛 .

1: Compute a maximum matching 𝐹 ′ ⊆ 𝐹 in 𝐺𝑀𝑆
.

2: Compute a 𝑛-coloring of 𝐺𝐶
pertaining to 𝐹 ′. Let 𝐹 ′𝑚 ⊆ 𝐹 ′ be

the sub-collection of flows colored𝑚,𝑚 ∈ [𝑛]. Assign all flows

in 𝐹 ′𝑚 to middle switch𝑀𝑚 .

3: Let𝑚′
be a color for which |𝐹𝑚 | is minimum over all𝑚 ∈ [𝑛].

Assign all flows in 𝐹 \ 𝐹 ′ to middle switch𝑀𝑚′ .

The next example applies the Doom-Switch algorithm to a given

collection of flows in a Clos network, and shows that the throughput

of the max-min fair allocation in the network yield by the algorithm

can exceed that of the max-min fair allocation in its macro-switch

by coercing some flows into decreasing their rates, thus allowing

other flows to increase their rates to overall throughput gain.

Example 5.3. Consider the collection of flows in the Clos network
for 𝑛 = 7 illustrated in Figure 4, and obtained by stacking three

copies of the construction introduced in Example 3.3 (upon re-

indexing the flows such that they leaving a common input switch

and enter a common output switch). (The figure shows only the

first input and the first output switches.) Therefore, there are two

types of flows, each identified with a different color:

• Type 1 (orange): There is one flow (𝑠 𝑗
1
, 𝑡

𝑗

1
), 𝑗 ∈ [6].

• Type 2 (blue): There is one flow (𝑠 𝑗
1
, 𝑡

𝑗−1
1

), 𝑗 ∈ [6] with 𝑗 is even.

In Figure 4a, in the max-min fair allocation in the macro-switch,

all flows are assigned rate
1

2
, thus leading to throughput

9

2
. In Fig-

ure 4b, we apply theDoom-Switch algorithm. Amaximummatching

in the bipartite multigraph pertaining to the macro-switch consists

of all type 1 flows, and the algorithm, for instance, assigns type 1

flow (𝑠 𝑗
1
, 𝑡

𝑗

1
) to 𝑀𝑗 , 𝑗 ∈ [6]; the algorithm assigns all type 2 flows

to𝑀7. In a max-min fair allocation for this routing, all type 2 flow

transfer their bottlenecks to 𝐼1𝑀7 and𝑀7𝑂1, thus decreasing their

rates from
1

2
to

1

3
. Hence, all type 1 flows keep the same bottleneck

links that in the macro-switch, and increase their rates from
1

2
to

2

3
.

Thus, the throughput increases from
9

2
to 5.

The theorem below establishes an upper bound of 2 on the fac-

tor of throughput gained by a throughput-max-min fair allocation

relative to the max-min fair allocation in a macro-switch, and gen-

eralizes the example above to show that this bound becomes tight

as the network size grows large.

Theorem 5.4. Consider a Clos network𝐶𝑛 , for an arbitrary integer
𝑛 ≥ 3. For every collection of flows in 𝐶𝑛 , it holds that 𝑇 T-MmF ≤
2𝑇MmF. Moreover, there is a collection of flows in𝐶𝑛 such that𝑇 T-MmF

≥ 2(1 − 𝜖)𝑇MmF, for 𝜖 arbitrary close from above to 1

𝑛−1 .

Proof. First, we show that for every collection of flows in 𝐶𝑛 it

holds that 𝑇T-MmF ≤ 2𝑇MmF
. We make use of the characterization
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Figure 4: Instantiation of the adversarial flows underlying Theo-
rem 5.4 for n = 7; in the proof, there are n−1

2 copies of the construc-
tion illustrated in Figure 2, and k type 2 (blue) flows in each gadget.

of maximum throughput across a Clos network, and of the relation-

ship between the max-min fair allocation in a macro-switch and

the maximum throughput across it, provided by Lemma 5.2 and

Theorem 3.4, respectively. We write:

𝑇T-MmF ≤ 𝑇T-MT (by definition)

= 𝑇MT (from Lemma 5.2)

≤ 2𝑇MmF (from Theorem 3.4) .

Second, we show that there is an adversarial collection of flows

in𝐶𝑛 such that 𝑇T-MmF ≥ 2(1 − 𝜖)𝑇MmF
, for 𝜖 arbitrary close from

above to
1

𝑛−1 . Without loss of generality, we assume that 𝑛 is odd.

The adversarial flows generalize those designed for Example 5.3 by

stacking
𝑛−1
2

copies of the construction introduced in Example 3.3,

and replacing each type 2 flow with 𝑘 type 2 flows between the

same source-destination pair. Thus, there are two types of flows:

• Type 1: There is one flow (𝑠 𝑗
1
, 𝑡

𝑗

1
), 𝑗 ∈ [𝑛 − 1].

• Type 2: There are 𝑘 flow (𝑠 𝑗
1
, 𝑡

𝑗−1
1

), 𝑗 ∈ [𝑛 − 1] with 𝑗 even.

In the max-min fair allocation in𝑀𝑆𝑛 , all
𝑛−1
2

(𝑘 + 2) flows have
rate

1

𝑘+1 , such that 𝑇MmF = 𝑛−1
2

(
1 + 1

𝑘+1

)
. In the max-min fair

allocation in𝐶𝑛 yield by the Doom-Switch algorithm, all 𝑛 − 1 type

1 flows have rate 1 − 2

𝑛−1 , and all
𝑛−1
2
𝑘 type 2 flows have rate

2

𝑘 (𝑛−1) , such that 𝑇T-MmF ≥ 𝑛 − 2. We conclude that

𝑇T-MmF ≥ 2(1 − 𝜖)𝑇MmF,

where 𝜖 = 𝑘+𝑛
(𝑛−1) (𝑘+2) , which tends to

1

𝑛−1 as 𝑘 tends to infinity. □
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6 RELATEDWORK
Multirate rearrangeability of Clos networks: The multirate

rearrangeability of Clos networks has been studied by both network-

ing and theory communities [11, 15, 21, 25, 27]. The setting consists

of a Clos network with a fixed number 𝑛 of servers per ToR switch,

a fixed number of ToR switches, and a variable number𝑚 of middle

switches; and a feasible allocation in its macro-switch. The goal

is to find a routing that replicates the feasible allocation in a Clos

network while minimizing the number of middle switches used. It

is attained by combinations of first-fit heuristics with Konig’s theo-

rem [15, 21]. A Clos network ismultirate rearrangeable if all feasible
allocations in its macro-switch can be replicated [25]. A popular

conjecture states that a Clos network is multirate rearrangeable if

and only if𝑚 ≥ 2𝑛 − 1 [11], with the best known lower [27] and

upper [21] bounds given by

⌈
5𝑛
4

⌉
and

⌈
20

9
𝑛
⌉
, respectively.

The setting and goals of this work are different. We investigate

the lex-max-min fairness and throughput provided by Clos net-

works of fixed parameter relative to those idealized by their macro-

switches in the presence of max-min fair constraints at each routing,

not the sizing of Clos networks of variable parameter to replicate

their macro-switches in the absence of these constraints.

Routing subject to max-min fair constraints: The problem
of finding a lex-max-min fair allocation in an arbitrary network for

flows having a common source and possibly different destinations

was introduced in [22]. The same work also shows that this problem

is NP-complete, and designs an approximation algorithm which

returns a feasible allocation that is approximately max-min fair, and

assigns each flow at least a
1

2
-fraction of its lex max-min fair rate.

The setting and goals of this work are also different. We consider

Clos networks, rather than arbitrary networks, and flows having

possibly different sources and different destinations, with flow rates

exactly max-min fair; these premises rule out the application of

the algorithm from Reference [22] to our setting. We analyze the

closeness between lex-max-min fair allocations in Clos networks

and max-min fair allocation in their macro-switches, rather than

approximating lex-max-min fair allocations.

Data-center routing algorithms:The long-standing data-center
routing algorithm is ECMP (Equal Cost Multi-Path), which assigns

flows to source-destination paths chosen uniformly at random [2].

State-of-the-art algorithms assume that flows are offered to the data-

center with their macro-switch rates, and their goal is to minimize

maximum link congestion, where the congestion of a link is the ratio
between the total macro-switch rate over all flows traversing the

link and the link capacity [3]. It is attained by greedy [3, 4, 18], and

local-search algorithms [3, 9] that assign flows to source-destination

paths based on path congestion, where the congestion of a path is

the maximum over the congestion of its links.

The simulation-based evaluation presented in the extended ver-

sion of this paper shows that, for stochastic inputs, algorithms

that first calculate the macro-switch rates, and then borrow these

rates to assign flows based on path congestion, can approximate

well the macro-switch rates. However, for worst-case inputs, it can

be shown there are adversarial flows for which the Clos network

max-min fair rates of some flows are arbitrarily smaller than their

max-min macro-switch rates.

7 CONCLUSIONS AND DISCUSSION
We proved three fundamental performance bounds characteriz-

ing the discrepancy between a Clos network subject to unsplittable

flows and max-min fair constraints at each routing and the corre-

sponding macro-switch with respect to throughput and fairness.

(R1):We showed that, for every interconnection network con-

necting sources to destinations (not necessarily a Clos network), the

imposition of max-min fair constraints up to halves the maximum

throughput even if we assume that arbitrary macro-switch rates

can be replicated in the network. This suggests that, if data-center

performance is measured in terms of flow completion times, then it

may benefit from avoiding max-min fair constraints. A mechanism

to circumvent these constraints is scheduling: by delaying the trans-
mission of some flows, the remaining flows can be transmitted at

link capacity (analogously to admission control). With scheduling,

the average throughput across the network over time may increase

such that the average flow completion times may decrease relative

to those obtained in the presence of max-min fair constraints.

(R2): We showed that the unsplittability of flows implies that a

lex-max-min fair allocation prioritized upholding the rates of flows

with lower macro-switch rate at the cost of decreasing the rates of

flows with higher macro-switch rate; thus, we showed that there

can be a large discrepancy between the network rates of the latter

flows and their macro-switch rates. This reveals that, if data-centers

wish to provide a macro-switch abstraction for max-min fairness,

then lex-max-min fairness may not be the right routing objective.

An alternative objective is relative-max-min fairness, which aims

at ensuring that the network rate of each flow is at least some

constant fraction of its macro-switch rate. We believe that showing

whether or not relative-max-min fairness can closely implement

this abstraction, and, if so, designing approximation algorithms for

this objective, is an important open question.

(R3): We showed that routing can pervert the enforcement

of max-min fair constraints at each routing to up to double the

throughput over the macro-switch at the cost of nullifying the rates

of some flows. This further supports the assertion that max-min

fair constraints at each routing alone cannot ensure a macro-switch

abstraction for max-min fairness, and, moreover, calls into question

the use of throughput as the metric for data-center performance.
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