
Modeling BBR’s Interactions with
Loss-Based Congestion Control

Ranysha Ware
rware@cs.cmu.edu

Carnegie Mellon University

Matthew K. Mukerjee
mukerjee@nefeli.io

Nefeli Networks

Srinivasan Seshan
srini@cs.cmu.edu

Carnegie Mellon University

Justine Sherry
sherry@cs.cmu.edu

Carnegie Mellon University

ABSTRACT
BBR is a new congestion control algorithm (CCA) deployed for Chromium
QUIC and the Linux kernel. As the default CCA for YouTube (which
commands 11+% of Internet traffic), BBR has rapidly become a major
player in Internet congestion control. BBR’s fairness or friendliness to
other connections has recently come under scrutiny as measurements
frommultiple research groups have shown undesirable outcomes when
BBR competes with traditional CCAs. One such outcome is a fixed,
40% proportion of link capacity consumed by a single BBR flow when
competing with as many as 16 loss-based algorithms like Cubic or
Reno. In this short paper, we provide the first model capturing BBR’s
behavior in competition with loss-based CCAs. Our model is coupled
with practical experiments to validate its implications. The key les-
son is this: under competition, BBR becomes window-limited by its
‘in-flight cap’ which then determines BBR’s bandwidth consumption.
By modeling the value of BBR’s in-flight cap under varying network
conditions, we can predict BBR’s throughput when competing against
Cubic flows with a median error of 5%, and against Reno with a
median of 8%.

1 INTRODUCTION
In 2016, Google published a new algorithm for congestion control
called BBR [4, 5]. Now deployed as the default congestion control
algorithm (CCA) for Google services including YouTube, which
commands 11% [13] of US Internet traffic, BBR consequently im-
pacts a large fraction of Internet connections today. In this short
paper, we focus on BBR’s behavior – ‘fairness’ or ‘friendliness’ –
when competing with legacy, loss-based CCAs such as Reno or
Cubic.

We are not the first to investigate BBR’s properties when com-
peting with traditional loss-based CCAs. Experimental studies have
noticed two key phenomena. First, in shallow-buffered networks,
BBR’s bandwidth probing phase causes buffer overflows and bursty
loss for competing flows; these bursts can lead to Cubic and Reno

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6948-0/19/10. . . $15.00
https://doi.org/TBA

nearly starving for bandwidth. This phenomena was first explored
in [11] and BBRv2 is expected to patch the problem [7].1

In residential capacity links (e.g. 10-100Mbps) with deep buffers,
studies [4, 9, 14, 16, 17] have generated conflicting reports on how
BBR shares bandwidth with competing Cubic and Reno flows.
We [17] and others [9, 14] observed a single BBR flow consum-
ing a fixed 35-40% of link capacity when competing with as many
as 16 Cubic flows. These findings contradict the implication of early
presentations on BBR [4] which illustrated scenarios where BBR
was generous to competing Cubic flows. In short, the state of af-
fairs is confusing, with no clear indication as to why any of the
empirically observed behaviors might emerge.

The contribution of this paper is to model BBR’s behavior when it
competes with traditional, loss-based congestion control algorithms
in residential, deep-buffered networks (studies [12] suggest that
residential routers typically have buffer depths 10-30× a bandwidth-
delay product for a 100ms RTT). The key insight behind our model
is that, while BBR is a rate-based algorithm when running alone,
BBR degrades to window-based transmission when it competes
with other flows. BBR’s window is set to a maximum ‘in-flight
cap’ which BBR computes as 2 × RTTest × Btlbwest , for RTTest
and Btlbwest , BBR’s estimates of the baseline RTT and its share of
bandwidth.

While the original BBR publication presented the in-flight cap
as merely a safety mechanism – included to allow BBR to handle
delayed ACKs [5] – this mechanism, unexpectedly, is the key factor
controlling BBR’s share of link capacity under competition. Our
model focuses on how BBR estimates its in-flight cap under different
network conditions; by computing what we expect BBR’s in-flight
cap to be, we can predict BBR’s share of link capacity for long-
lived flows. The size of the in-flight cap is influenced by several
parameters: the link capacity and latency, the size of the bottleneck
queue, and the number of concurrent BBR flows. But, notably absent,
the number of competing loss-based (Cubic or Reno) flows does not
play a factor in computing this in-flight cap. Hence, BBR’s sending
rate is not influenced by the number of competing traditional flows;
this is the reason behind reports that BBR is ‘unfair’ to Cubic and
Reno in multi-flow settings [9, 17].

In what follows, we discuss our testbed in §2 and early measure-
ments of BBR’s ‘fairness’ or ‘friendliness’ in §3. We then provide a
primer on the BBR algorithm in §4. We then develop our analysis
of BBR in §5 along with an explanation of BBR’s convergence to
40% of link capacity. We connect our results to related work in §6
and and conclude in §7.
1BBRv2 has very recently been released; in this paper we focus on BBRv1 which was
the only version available at the time of this study.

https://doi.org/TBA

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Ranysha Ware et al.

service at k Mbps

delay by j millisecondsServers Client

BESS Node

(a) Testbed for congestion experiments
which introduces queueing at a controlled
bottleneck.

(b) Average goodput for two competing
flows over 4 min in a 40ms×10Mbps net-
work with varying queue sizes.

(c) BBR’s goodput over time competing
with 16 Cubic flows in a 40ms×10Mbps net-
work with a 32 BDP queue.

Figure 1: Testbed and initial measurements of BBR’s empirical behaviors.

(a) Convergence time for 1 BBR
flow and 1 Cubic flow over vary-
ing queue sizes

.

(b) Goodput for 1 BBR flow and
1 Cubic flow over varying mea-
surement intervals.

Figure 2: BBR vs Cubic in a 40ms × 10Mbps network

2 TESTBED
Throughout this paper, we show experiments generated in the
testbed illustrated in Fig. 1a. Each experiment involves three servers:
a server/sender, a BESS [10] software switch, and a client/receiver.
All servers are running Linux 4.13 (using internal TCP pacing),
have Intel E5-2660V3 processors, and have dual-port Intel X520
10Gb NICs. Senders and receivers use iPerf 3 [1] to generate/receive
traffic. Within BESS, traffic is serviced at a configurable rate below
the link capacity to introduce queueing. The queue size is set to
ratios relative to BDP; since the BESS queue module only supports
powers-of-two sizes we rounded to the nearest power-of-two. To
configure delay, we hold all ACKs for a configurable amount of
time. Unless otherwise noted, we set bandwidth to 10 Mbps and
RTT to 40ms, following Google’s parameters in IETF presentations
[4, 6].

3 BBR IN COMPETITION
A natural concern when deploying a new CCA on the Internet is
how the new CCA will interact with other deployed algorithms.
Will the new CCA be ‘fair’ to existing CCAs, or starve them?

An early BBR presentation [4] provided a glimpse into these
questions. A graph in the presentation measures 1 BBR flow vs. 1
Cubic flow over 4 minutes, and illustrates a correlation between the
size of the bottleneck queue and BBR’s bandwidth consumption.
We set out to replicate Google’s experiments and easily did so –
shown in Fig. 1b – as did other studies [14]. The implication of

Figure 3: BBR andCubic or Reno’s queuewhen competing for 4min-
utes over a network with a 64 BDP (1024 packet) queue.

these graphs is that BBR is generous to existing CCAs in typical
buffer bloated networks, especially to Cubic.

Subsequent studies in our group and others questioned both
the results – what fraction of the link BBR consumed – as well as
the implication of generosity [9, 14, 17]. Some data [17] showed
that BBR converged to different rates – around 40% of the link
capacity for queue sizes up to 32×BDP, matching the Reno graph,
but not matching the Cubic graph. We show in Figs. 3 and 2 that this
incongruity is merely the result of differing experimental conditions
and the amount of time it takes for BBR to converge to its steady-
state share of link capacity. Where BBR quickly matches Reno’s
queue occupancy – and therefore consumption of the link capacity –
BBR takes longer to scale up when competing with Cubic (Fig. 3). As
a consequence, the ‘average goodput’ one computes is dependent
on how long one measures the competition between BBR and Cubic
(Fig. 2b). Furthermore, to reach convergence can take on the order
of minutes in very deep buffered networks (Fig. 2b).

Another set of experiments [9, 17] suggest that BBR may con-
sume far more than its ‘fair’ share of link capacity. Fig. 1c shows
goodput over time of BBR vs 16 Cubic flows in the same 40ms ×
10Mbps scenario. BBR consumes an outsized share of bandwidth,
leaving just over half to be shared by the sixteen other connections.

Unfortunately, relying only on these empirical studies leave us
like the blind men and the elephant, each relying on only pieces of
the overall picture to understand BBR’s characteristics. To get to the
bottom of why BBR behaves in the way it does, and to predict how
BBR might behave in unobserved scenarios, we turn to modeling
in the rest of this paper.

Modeling BBR’s Interactions with
Loss-Based Congestion Control

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

ProbeRTTProbeBW Drain Steady
State

7th RTT

Every 10 seconds

Return to
Prev. State

repeat

6 RTTs

Figure 4: BBR’s steady-state operation.

4 BBR PRIMER
BBR is designed to be a rate-based algorithm. BBR maintains two
key variables: Btlbwest BBR’s estimate of the available throughput
for it to transmit over the network, and RTTest BBR’s estimate
of the baseline round-trip time. BBR paces packets at Btlbwest
rate. Assuming that BBR is transmitting over a single link with no
queueing (and a sender which ACKs instantaneously), BBR should
expect to never have more than Btlbwest ×RTTest unacked packets
outstanding.

As a failsafe and to keep the pipe full in networks that delay or
aggregate ACKs, BBR implementations impose a ‘in-flight cap’ –
it will never allow itself to have more than 2 × Btlbwest × RTTest
unacknowledged packets outstanding [5, 6]. As we will show, this
cap turns out to be the central parameter controlling BBR’s link
utilization in competition with Cubic and Reno.

To estimate Btlbwest and RTTest , BBR cycles (post-startup)
through a simple state machine illustrated in Fig. 4.2

Estimating the rate. BBR sends at a fixed rate BWest . BBR sets
its initial rate using its own version of ‘slow start’; henceforth
BBR ‘probes for bandwidth’ (ProbeBW in Fig. 4) one out of every 8
RTTs. During this stage, BBR inflates the rate to 1.25∗Btlbwest and
observes the achieved throughput during that interval. BBR then
lowers its rate to (0.75 ∗ Btlbwest) to drain any excess packets out
of queues. BBR’s Btlbwest is then the max observed packet delivery
rate over the last 8 RTTs. It then sends at the newly-recalculated
Btlbwest for the next 6 RTTs before probing again.

Estimating the RTT. BBR also keeps track of the smallest ob-
served RTT. If BBR goes 10 seconds without observing a smaller
RTT, it enters ProbeRTT. During ProbeRTT, BBR caps the amount
of data it has in-flight to only 4 packets and measures the RTT for
those packets for at least 200ms and one packet-timed round-trip. 3
BBR drops its sending rate to try to ensure none of its own packets
are occupying queues in the network: in Fig. 1c one can observe
BBR dropping its rate to almost zero on ten-second intervals. After
ProbeRTT, BBR returns to the state it was in previously.

5 ANALYSIS AND MODELING
We model BBR’s post-convergence share of link capacity when
competing with loss-based CCAs in three phases.

2Our state machine figure differs from the ‘standard’ BBR figure [3] by focusing on only
steady-state operation rather than startup, and separating apart the three sub-phases
of ProbeBW.
3A "packet-timed round-trip" means that a data packet is sent and then the sender
waits for that packet or some late packet to be acknowledged

(1) Simple Model of In-flight Cap:We first model a simple sce-
nario to understand how BBR’s in-flight cap controls BBR’s sending
rate. In this scenario, the queue is highly bloated, baseline RTTs are
negligible, and there are only two flows (one BBR, one loss-based)
competing.

(2) Extended Model of In-flight Cap: After demonstrating that
BBR’s in-flight cap controls its sending rate, we develop a more
robust model, covering scenarios with multiple BBR flows, finite
queue capacities, and non-negligible RTTs.

(3) Model of Probing Time: BBR’s in-flight cap is only 4 packets
during ProbeRTT, hence BBR spends time without transmitting
data every ten seconds. To predict BBR’s sending rate overall, we
must reduce the rate predicted by the in-flight cap proportionally
to the amount of time BBR spends in ProbeRTT.

5.1 Assumptions and Parameters
Table 1 lists the parameters in our model. We use these parameters
to compute p, Cubic/Reno’s share of the link capacity at conver-
gence, and 1 − p, BBR’s share of link capacity at convergence. Our
model is based on the following assumptions:

(1) Flows have infinite data to send; their sending rates are deter-
mined by their CCA, which is either BBR, Cubic, or Reno.

(2) All flows experience the same congestion-free RTT and the
available link capacity is fixed.

(3) All packets are a fixed size.

(4) The network is congested and the queue is typically full; a flow’s
share of throughput hence equals its share of the queue.

(5) All loss-based CCA’s are synchronized [15]. All BBR flows are
synchronized [5]. All flows begin at the same time.

5.2 Simple Model: BBR’s ProbeBW State
The first insight of our model is that BBR is controlled by its in-
flight cap: in BBR’s ProbeBW phase, BBR aggressively pushes out
loss-based competitors until it reaches its in-flight cap.

Model: Why this happens follows from the BBR algorithm and
loss-based CCAs’ reaction to packet losses. Assume a link capacity
c , where BBR and the loss-based CCAs, in aggregate, are consuming
all of the available capacity. By probing for 125% of its current share
of bandwidth, BBR pushes extra data into the network (offered load
> c) leading to loss for all senders. Loss-based algorithms back off,
dropping their window sizes and corresponding sending rate. BBR
does not react to losses and instead increases its sending rate, since
it successfully sent more data during bandwidth probing than it
did in prior cycles. The loss-based CCA returns to ramping up its
sending rate, and together the combined throughput of the two
becomes slightly higher than the link capacity and the two flows
begin to fill the bottleneck buffer. This process continues until BBR
hits an in-flight cap; we expect that in the absence of a cap it would
consume the entire link capacity.

Validation:We modified BBR in our testbed to run with a in-flight
cap of 4 × BDP . In Fig. 5b we show one run with our elevated in-
flight cap along with a run with the standard cap in a testbed in a 40

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Ranysha Ware et al.

Parameter Description
N Number of BBR flows sharing bottleneck
q Bottleneck queue capacity (packets)
c Bottleneck link capacity (packets per second)
l RTT when there is no congestion (seconds)
X Queue capacity as multiple of BDP: q = Xcl

d Flow completion times after convergence (seconds)
Table 1: Description of model parameters

(a) 2 BDP in-flight cap (b) 4 BDP in-flight cap

Figure 5: BBR vs Cubic in a 10Mbps×40ms testbed with a 32 BDP
queue. Black dashed line is the model (5).

ms × 10 Mbps network with a 32 BDP packet queue. BBR increases
its share of the link capacity; we show in the next subsection that
this increased share matches our prediction of a window-limited
sender with a window the size of the in-flight cap.

5.3 Simple Model: BBR’s In-flight Cap
To understand the impact of the in-flight cap on BBR’s performance,
we build a model making two simplifying assumptions (we relax
these assumptions later): (1) There is only 1 BBR flow competing
with any number loss-based CCAs, and (2) The queue capacity is
much greater than the BDP (q ≫ cl).

Model: Recall that the in-flight cap is calculated as:

inflightcap = 2 × RTTest × Btlbwest (1)

With a queue capacity of q we can assume that, at any given point
of competition p from loss-based flows, BBR will consume the
remaining bandwidth:

Btlbwest = (1 − p)c . (2)

About every 10 seconds, BBR enters ProbeRTT to measure the
baseline RTT, draining any packets BBR has in the queue.

When there is no competing traffic, 1 BBR flow can success-
fully measure the baseline RTT l during ProbeRTT. When there is
competing traffic from loss-based CCAs, there will be p × q data
in the queue. Assuming a negligible baseline RTT (q ≫ cl) — as
bufferbloat increases, queuing delay becomes the dominant factor
in latency — we have:

RTTest =
pq

c
. (3)

Plugging (2) and (3) into (1) and reducing gives:

inflightcap = 2(p − p2)q. (4)

We know from the previous subsection that BBR will increase its
rate until it is limited by the in-flight cap. To compute this, we set

inflightcap equal to the amount of data BBR has in-flight and solve
for p:

2 × (p − p2)q = (1 − p)q

p =
1
2

(5)

We can now see that while 1 BBR flow increases its sending rate
during ProbeBW, once it intersects the in-flight cap it will not be
able to consume more than 50% of the available capacity.

Validation: This simple model for the in-flight cap in a deep-
buffered network says if the BDP cap is 2, then BBR should occupy
about half the queue after convergence. Similarly, if the BDP cap
is 4, then BBR should occupy at most 75% of the queue after con-
vergence. Fig. 5 shows BBR converging at each of these points in a
deep-buffered network with a 32 BDP queue.

Note: This simple model demonstrates why BBR retains the same
share of link capacity regardless of the number of competing Cubic
or Reno flows. ProbeBW is aggressive enough to force one or many
loss-based flows to back off; the bandwidth cap is set simply by the
queue occupancy of the competing loss-based flows – but not how
many loss-based flows there are. The calculations behind ProbeBW
and the in-flight cap lack any signal to infer number of competing
loss-based flows and adapt to achieve equal shares/fairness.

5.4 Extended Model: In-flight Cap
Our simple model assumes a buffer-bloated network and only one
BBR flow. In this section, we show how BBR’s in-flight cap changes
given the size of the queue (bloated or not) and with an increasing
number of BBR flows.

Multiple BBR Flows Alone: To understand multiple BBR flows
competing with loss-based flows, we first need to understand mul-
tiple BBR flows competing in the absence of other traffic. After
convergence, each BBR flow has a slightly overestimated Btlbwest
near their fair share: 1

N × c + ϵ . The additional ϵ is – similar to our
discussion in §5.2 – due to the aggression of ProbeBW. Here, BBR
flows compete against each other; BBR uses a max() operation to
compute BtlBwest over multiple samples of sending rates resulting
in, usually, a slight overestimate of its fair share. While we ignore
this ϵ in our modeling, its existence forces the aggregate of BBR
flows to send at a rate slightly higher than c , filling queues until
each flow reaches its bandwidth cap and becomes window-limited
and subsequently ACK-clocked.

However, the cap may also be elevated due to the presence of
multiple competing flows. During ProbeRTT, each flow will limit
inflight to 4 packets, so that they can drain all of their packets from
the queue and measure the baseline RTT. For N BBR flows, this
means in aggregate they will have 4N packets inflight. However, if
4N packets is greater than the BDP, the queue will not drain during
ProbeRTT so RTTest includes some queueing delay:

RTTest = max(l ,
4N − cl

c
+ l) (6)

Thus, the the in-flight cap when N BBR flows compete is depen-
dent on the BDP. Further, if the queue is smaller than 4N − cl when
4N > cl , then the BBR flows will consume the entire queue and
hence 100% link capacity.

Modeling BBR’s Interactions with
Loss-Based Congestion Control

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

(a) RTTest . (b) Inflightcap .

Figure 6: Comparisons between model and observation for RTTest
and in-flightcap at 40ms × 15Mbps and 64 BDP queue.

Figure 7: Probet ime model for 40ms × 10 Mbps link vs. measured
probe time for BBR flows competing with 1 Cubic flow in varying
queue sizes.

Validation: Fig. 6a shows the measured median RTT estimate
across a varying number of BBR flows versus (6). The estimate
increases linearly, similar to our prediction. Here, the BDP is only
75KB, so the queue will not completely drain during ProbeRTT
when there are 13 or more BBR flows. Fig. 6b shows how this
corresponds to the inflight cap. If the BDP were larger, the flows
would have been able to measure the correct RTTest .

Multiple BBR Flows vs Loss-Based Flows: We now return to
multiple BBR flows vs loss-based flows. As we saw when BBR flows
were only competing with each other, if the BDP is not large enough
to accommodate 4N packets during ProbeRTT, BBR’s RTT estimate
will be too large. If we assume 4N additional packets are in the
queue during ProbeRTT, then,

RTTest =
pq + 4N

c
+ l . (7)

Here, we also include l , no longer assuming it is negligible compared
to queueing delay. Plugging (7) and (2) into (1), in aggregate all N
BBR flows will have:

inflightcap = 2(1 − p)c

(
pq + 4N

c
+ l

)
. (8)

To compute the BBR flows’ aggregate fraction of the link, we set
inflightcap equal to the amount of data BBR flows have in-flight
and solve for p:

2(1 − p)c

(
pq + 4N

c
+ l

)
= (1 − p)q + (1 − p)cl

p =
1
2
−

1
2X

−
4N
q

(9)

If p were a negative number, this would mean BBR’s inflight cap
exceeded the total capacity (BDP + the queue size) and hence BBR’s
share of the link would be 100%.

In the next section, we complete our extended model by comput-
ing the amount of time BBR operates at its in-flight cap.

5.5 Extended Model: ProbeRTT Duration
During ProbeRTT, BBR stops sending data while it waits for its in-
flight data to fall to 4 packets. You can see this behavior impacting
goodput in Fig. 1c. If the queue is large and also full when BBR
goes into ProbeRTT, this results in long intervals where BBR is not
sending any data. 4 This results in BBR on average consuming a
lower fraction of link capacity than if it were sending constantly at
a rate proportional to its inflight cap.

Model: If the total duration of time the flows are competing (after
convergence) is d , the fraction of the link BBR flows will use when
competing with loss-based CCAs is:

BBRf rac = (1 − p) ×

(
d − Probet ime

d

)
, (10)

where p is computed using (9). During Probet ime throughput is
nearly zero.

We compute Probet ime by computing the length of time spent
in ProbeRTT state, and multiply by how many times BBR will
go into ProbeRTT state. Assuming the queue is full before BBR
enters ProbeRTT state, BBR will have to wait for the queue to drain
before its data in-flight falls to 4 packets. Once it reaches this in-
flight cap, BBR also waits an additional 200ms and a packet-timed
round trip before exiting ProbeRTT. Assuming synchronized flows
and the queue is typically full, BBR flows should rarely measure a
smaller RTT outside of ProbeRTT state so it should enter ProbeRTT
about every 10 seconds. Altogether, this means probe time increases
linearly with queue size:

Probet ime =
(q
c
+ .2 + l

)
×

d

10
(11)

Validating Prober t t : First, we measure the probe time from exper-
iments with competing BBR flows in for a 40ms×15 Mbps network
for experiments run for 400 seconds after convergence (d=400)
for Cubic We compare this to our prediction computed from (11).
Fig. 7 compares (11) to measured probe time—the model fits the
observations well. Most commonly the predicted probe time for
experiments with Cubic is 1-3 seconds larger than the expectation
and is at most about 8 seconds too large.

Validating theExtendedModel:Wemeasure the average through-
put for BBR competing against Cubic or Reno after convergence
(d = 400 for Cubic, d = 200 for Reno). We use (10) to compute BBR’s
expected fraction of the link versus our measurements. Our expec-
tations closely follow empirical results in most cases, validating our
model. Fig. 8 compares (10) to the BBR flows aggregate fraction of
the link when competing with Reno or Cubic. The median error
competing against Cubic 5%, and against Reno 8%.

4In fact, BBR authors have even noted that this is a significant limitation on BBR’s
performance, and in BBRv2 design change ProbeRTT so that it reduces BBR’s inflight
cap to 50% of it’s BDPest instead of 4 packets [7].

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Ranysha Ware et al.

(a) 40ms × 10 Mbps, vs 1 Cubic Flow (b) 30ms × 50 Mbps, vs 1 Cubic Flow (c) 40ms × 10 Mbps, vs 1 Reno Flow

Figure 8: Model compared to observed aggregate fraction of the link.

For Cubic, the model fits the observations best with large queue
sizes and large numbers of flows. In this case, our assumptions
that the queue is typically full, and 4N BBR packets will be in the
queue during ProbeRTT, inflating RTTest , are more likely to be true.
However, Reno reveals an opposite trend: the model does worse as
the queue becomes larger. We suspect this is due to Reno’s slower
(relative to Cubic) additive increase failing to take advantage of the
available capacity and hence leaving a larger share of throughput
for BBR.

6 RELATEDWORK
The first independent study of BBR was presented by Hock et al.
[11]. Their analysis of BBR identifies the important property that
multiple BBR flows operate at their in-flight cap in buffer-bloated
networks. Further, they present experiments for 1 BBR flow and
1 Cubic flow, noting that in large buffers, they oscillate around
equally sharing the bottleneck. They also observe that when 2 BBR
flows compete with 2 Cubic flows in a shallow-buffered network,
BBR flows will starve the Cubic flows. Several additional empirical
studies have reproduced and extended these results [9, 14, 16].
Scholz et al. [14] run tests for up to 10 BBR flows competing with up
to 10 Cubic flows in a large buffer and conclude that, “independent
of the number of BBR and Cubic flows, BBR flows are always able
to claim at least 35% of the total bandwidth." Dong et al. [9] also
note that as 1 BBR flow competes with an ever increasing number
of Cubic flows, BBR’s fraction of the bandwidth remains the same.

Each of these studies touches on important aspects of BBR’s
behavior, but we are the first to model BBR’s behavior in these
scenarios rather than to simply observe it. Through our model,
we are able to explain the missing parts of seemingly conflicting
conclusions drawn in prior work.

Google is actively developing BBRv2 and very recently released
a Linux kernel implementation of BBRv2 [2, 7, 8]. Early presen-
tations [8] imply that it primarily resolves the fairness issues dis-
cussed by Hock et al [11], but does not touch on the fixed proportion
of link capacity as discussed in this paper.

7 CONCLUSION
In this paper, we have shown that BBR’s inflight cap – a ‘safety
mechanism’ added to handle delayed and aggregated ACKs – is in
reality central to BBR’s behavior on the Internet. When BBR flows
compete with other traffic (BBR, Cubic, or Reno), BBR becomes
window-limited and ACK-clocked, sending packets at a rate entirely
determined by its inflight cap.

When competing with loss-based TCPs such as Cubic and Reno,
BBR’s cap can be computed using the bottleneck buffer size, the
number of concurrent BBR flows, and the baseline network RTT.
However, the number of competing loss-based flows are not a factor
in computing this cap. Hence, BBR does not reduce its sending rate
even as more loss-based flows arrive on the network. This is the
cause of reports arguing that BBR is ‘unfair’ to legacy TCPs.

8 ACKNOWLEDGEMENTS
We thank theNeal Cardwell, YuchengCheng, Soheil Hassas Yeganeh,
and Jana Iyengar for the fruitful conversations surrounding BBR
and our analysis, as well as our shepherd Srikanth Sundaresan
for guiding the revision process. This research was funded by a
Facebook Emerging Scholar Fellowship, NSF Grant #1850384, and
a Google Faculty Research Award.

REFERENCES
[1] 2018. iperf3. https://software.es.net/iperf/. (2018).
[2] 2019. BBRv2 alpha Linux code. https://github.com/google/bbr/blob/v2alpha.

(2019).
[3] N. Cardwell, Y. Chen, S. Hassas Yeganeh, and V. Jacobsen. 2017. BBR Congestion

Control. IETF Draft draft-cardwell-iccrg-bbr-congestion-control-00. (2017).
[4] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2016. BBR congestion control. In IETF meeting.
[5] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2017. BBR: Congestion-based Congestion Control. Commun. ACM
60, 2 (Jan. 2017), 58–66. https://doi.org/10.1145/3009824

[6] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR Congestion Control: An update. In Presentation in
ICCRG at IETF 98th meeting.

[7] N. Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. 2019. BBRv2: A
Model-Based Congestion Control. In Presentation at IETF104.

[8] N. Cardwell, Yuchung Cheng, Soheil Hassas Yeganehand Priyaranjan Jha, , Yousuk
Seung, Ian Swett, Victor Vasiliev, Bin Wu, Matt Mathis, and Van Jacobson. 2019.

https://software.es.net/iperf/
https://github.com/google/bbr/blob/v2alpha
https://doi.org/10.1145/3009824

Modeling BBR’s Interactions with
Loss-Based Congestion Control

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

BBRv2: A Model-Based Congestion Control IETF 105 Update. In Presentation at
IETF105.

[9] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 343–356. https://www.usenix.org/
conference/nsdi18/presentation/dong

[10] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A Software NIC to Augment Hardware. Technical Report
UCB/EECS-2015-155. EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

[11] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental evaluation
of BBR congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP). IEEE, 1–10.

[12] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. 2010. iNet-
alyzr: Illuminating the Edge Network. In Proceedings of the 10th ACM SIGCOMM

Conference on Internet Measurement (IMC ’10). ACM, New York, NY, USA, 246–259.
https://doi.org/10.1145/1879141.1879173

[13] Rob Marvin. 2018. Netflix and YouTube Make Up Over a Quarter of Global
Internet Traffic. PC Magazine (15 10 2018).

[14] Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien
Geyer, and Georg Carle. 2018. Towards a Deeper Understanding of TCP BBR
Congestion Control. In IFIP Networking 2018. Zurich, Switzerland.

[15] Scott Shenker, Lixia Zhang, and David D Clark. 1990. Some observations on
the dynamics of a congestion control algorithm. ACM SIGCOMM Computer
Communication Review 20, 5 (1990), 30–39.

[16] Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. 2019. Fifty Shades of
Congestion Control: A Performance and Interactions Evaluation. arXiv preprint
arXiv:1903.03852 (2019).

[17] R. Ware, M. K. Mukerjee, J. Sherry, and S. Seshan. 2018. The Battle for Bandwidth:
Fairness and Heterogeneous Congestion Control. In Poster at NSDI 2018.

https://www.usenix.org/conference/nsdi18/presentation/dong
https://www.usenix.org/conference/nsdi18/presentation/dong
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://doi.org/10.1145/1879141.1879173

	Abstract
	1 Introduction
	2 Testbed
	3 BBR In Competition
	4 BBR Primer
	5 Analysis and Modeling
	5.1 Assumptions and Parameters
	5.2 Simple Model: BBR's ProbeBW State
	5.3 Simple Model: BBR's In-flight Cap
	5.4 Extended Model: In-flight Cap
	5.5 Extended Model: ProbeRTT Duration

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

