A Dual-Channel Approach to Protocol Design in the
Presence of Middleboxes

Steve Wang
Justine Sherry
Sangjin Han

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-205
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-205.html

December 13, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Dual-Channel Approach to Protocol Design
in the Presence of Middleboxes

Steve Wang Justine Sherry Sangjin Han
UC Berkeley
Abstract avoid being middlebox-adverse yet still not be middlebox-

To improve security and performance, middleboxes (such
as firewalls or proxies) may inspect and transform packet
contents, delete and inject packets to active flows, and
may even reset or terminate entire connections. However,
for novel protocols which may not conform to common
flow behaviors, middleboxes can interfere with or even
block outright the use of these new protocols.

In this paper, we present a dual-channel design ap-
proach as a way for new protocols to achieve middlebox-
friendliness. Under the dual-channel approach, data traf-
fic is sent over a traditional TCP/UDP channel, and addi-
tional functionality is accommodated within the payload
of a secondary channel. As a case study, we present our
prototype implementation of Forward Error Correction
for TCP which improves flow completion times by al-
most 2.5x under 2% loss, despite the overhead of the
secondary channel.

1 Introduction

Middleboxes — such as firewalls, caches, and WAN opti-
mizers — are recognized as a primary challenge to the de-
sign of new protocols, especially to new proposals which
extend classic protocols, i.e., IP, TCP, and UDP [5, 9]. A
middlebox may change packet contents (e.g., rewriting
sequence numbers or source/destination IP addresses),
remove packet contents (e.g., stripping out IP options),
drop packets (e.g., filtering traffic to or from a particu-
lar port), or even inject new packets (e.g., injecting TCP
RSTs to terminate a connection). These manipulations
can interfere with protocol extensions which rely on the
contents of the modified fields. As middleboxes become
more and more common, these impediments to protocol
deployments impact more and more users. Indeed, middle-
boxes are now common in enterprise, home, broadband,
and cellular networks [4, 15, 17].

Consequently, a key goal in modern protocol design
is middlebox-friendliness: that the protocol continue to
operate correctly and fully even in the presence of mid-
dleboxes. Nevertheless, given the challenge of achieving
middlebox-friendliness, many protocol designers have
aimed for the more limited goal of avoiding designing
protocols which are middlebox-adverse. A protocol which
is middlebox-adverse hinders communication by perform-
ing incorrect behavior (delivering incorrect or out of or-
der bytes) or failing to transmit at all. A protocol may

friendly: many protocols fail in the presence of middle-
boxes by defaulting to basic TCP, allowing communi-
cation to continue but without the benefits of the new
protocol extension. Given the widespread deployment of
middleboxes, a protocol which is not middlebox-friendly
(even if it is not middlebox-adverse) may expect only
limited applicability.

One design approach for middlebox-friendly protocols
is to make a thorough study of which fields are commonly
modified in the target deployment environment, and then
to simply “design around” these fields. For example, if
hardware in the target deployment environment strips
IP options, but leaves TCP options intact, a protocol de-
signer might choose to place protocol-specific bits in the
TCP header rather than the IP header. This approach is a
headache for protocol designers, who must carefully eval-
uate where and how changes may occur in order to decide
where to wedge in new control data for the extension.

In this paper, we propose a dual channel approach to
protocol design with the goal of achieiving middlebox-
friendliness in a general fashion. Protocols designed with
a dual channel approach send data using existing, unmod-
ified protocols — TCP or UDP over IP, with no special bits
set and no new data wedged in to the protocol. Instead,
all control traffic or additional data for the new protocol
is transmitted within the payload over a secondary UDP
channel. Because the protocol extension essentially op-
erates at the application layer, middleboxes that interfere
with any or all header fields will still leave the control
data in the secondary channel intact. While this approach
cannot encapsulate every possible protocol extension, we
believe it is general enough to aid many types of exten-
sions.

To illustrate the dual channel approach, we present an
extension to TCP, 2CFEC, which augments TCP with
Forward Error Correction for improved recovery from
packet loss. Despite the overhead of the secondary chan-
nel, 2CFEC improves typical flow completion times by
almost 2.5x. The rest of the paper is organized as fol-
lows. In §2 we describe our case study, forward error
correction for TCP. In §3, we describe our approach, pay-
ing attention to the design choices we make to preserve
middlebox-friendliness. Finally, in §4, we discuss lessons
learned from our design and other protocol extensions
which might benefit from the dual-channel approach.

2.
5 0% loss
o | 2% loss s
5% loss ===

1.5 =
1 v
g m B -

15 8 75 15 S0 oo
Flow Size (KB)

Flow Completion Time (s)

Fig. 1: Flow completion time in controlled experiments (10Gbps
BW/100ms RTT) with random loss. Boxplots show 1-5-50-95-
99 percentiles.

2 Case Study: FEC

The vast majority of TCP flows are small, and in the
absence of loss, they complete in a few round-trips. How-
ever, they are also much more severely penalized by
packet loss than long flows. Because they have so few
packets, loss may not trigger TCP ‘fast retransmit’, but in-
stead leave the connection stalled until a timeout triggers
retransmission, which can be often orders of magnitude
higher than the actual RTT [6]. The short flow problem
can especially hinder web users, as most HTTP connec-
tions carry small objects [2, 6]. Even worse, Web requests
involve many interdependent flows, leading to a straggler
problem when any single one of the flows suffers a loss.

In order to avoid the timeout + RTT penalty from TCP
retransmissions, some have proposed adding forward er-
ror correction (FEC) to TCP to recover from packet loss
more quickly [3, 6]. FEC is a technique for reliable data
transmission over a lossy/noisy channel. Under FEC with
systematic coding, a sender transmits redundant encoded
data along with the original data; when the bit stream has
gaps, this redundant data allows the receiver to reconstruct
the missing data immediately.

An overly-idealized FEC scheme might be able
to recover from all loss. In Figure 1, we show mi-
crobenchmarks of flow completion times over a 10 Gbps
BW/100 ms RTT link when loss is introduced randomly
with 5% of packets lost, 2% of packets lost, or, the ideal
case, when either no packets are lost or an FEC scheme
allows for recovery from all lost packets. With no loss,
we see that flow completion times have very low variance
and complete entirely in under 0.5s at all the shown flow
sizes; loss leads to high variance in FCTs and overall, 3-
5x worse performance. In Figure 2, we see the potential
benefits in web page load times from an ideal FEC imple-
mentation. The figure shows a CDF of page load times
for the Alexa top-200 sites, once again with the same link
configuration. We see that performance penalties are pri-
marily in the median page load times: at 3% loss median
pages take 2x more time than in the optimal (0% loss)

%98 L. 0% loss T
’ 1% loss n
3% loss e

CDF

0.5 / -

Page Load Time (ms)

Fig. 2: Page load times for Alexa Top-200 Web sites, on the
same emulated link.

scenario. These results confirm that Web browsing can
greatly benefit from FEC in the presence of any packet
loss.

We are not the first to propose augmenting FEC to
TCP [3, 6]. A common thread among existing designs is
to introduce new TCP options and divert existing TCP
fields into different usages. This approach has advantages
in terms of efficiency and simplicity but can lead to in-
compatibility with middleboxes. For example, the FEC
scheme proposed by Flach et al. [6] carries the encoded
redundancy data in-band, along with special TCP options
set. This implementation has two potential issues with
TCP-understanding middleboxes: i) they can strip out
unknown TCP options or even block the entire flow [9];
ii) since the original data and redundancy data share the
same TCP sequence number, middleboxes may mistake
this behavior as a subterfuge attack [12]. As we’ll discuss
below, the two-channel approach avoids the above chal-
lenges with middlebox-friendliness by placing control and
redundancy information in a secondary channel, while
achieving the same goals as the traditional single-channel
approach.

3 FEC in a Dual-Channel Design

In this section, we describe our dual-channel implemen-
tation of Forward Error Correction for TCP. We start by
describing our protocol, 2CFEC, in detail in §3.1. In §3.2,
We then discuss deployability of 2CFEC, relying on mea-
surement studies of middlebox behaviours in the wild.
Finally, in §3.3, we compare flow completion times with
2CFEC against the ideal FEC implementation from §2.

3.1 Protocol Design

We now present the key aspects of 2CFEC which en-
able middlebox-friendliness.! Using the dual channel ap-
proach, 2CFEC is robust to modification of several header
fields at a time.

We refer to the two channels as the data channel (pri-
mary) and the FEC channel (secondary). The data channel

1A full design description will be available in a forthcoming technical
report.

Client
SYN
1w
(c
ACK+GET

Server

(1) Channel Establishment:

open UDP channel for FEC.
SYN/ACK

W
o]
(2) Connection Association:

200 OK establish a shared identifier for

Redundancy Packet Format

OHHHHHHHHXHHHHH‘I

Version ‘ 0 ‘ Reserved ‘ Index

IE
MsglLen ‘

FlowID

[Packet ID [0]]

Checksum [0]

Packet ID [MsgLen — 1] l Checksum [MsgLen — 1]

Encoded Payload

Control Packet Format

3) E:$$E Bgi; TCP connection to apply FEC to.
k
pits (HTTP Data) (3) Redundancy Transmission
R every k packets (or 10ms),
P Py R server sends rredundancy
pkts{ --—"" packet(s).

Fig. 3: Data and FEC channel between client and server.

operates over standard TCP and requires no additional
explanation. The FEC channel runs in parallel to the data
channel over a UDP connection. There are three main
phases in FEC channel operation: channel establishment,
connection association, and redundancy transmission. All
three phases are illustrated in Figure 3.

Channel Establishment. The first stage is “channel es-
tablishment” — setting up the parallel UDP connection
itself and agreeing on a mutually understood redundancy
protocol. In Figure 4, we illustrate the packet formats for
traffic sent over the FEC channel. The lower packet for-
mat is for “control packets”. The client initiates> channel
establishment by sending a control packet with the W flag
enabled. The client also appends the relevant options for
the W flag: r, an integer representing the redundancy fac-
tor for the connection; k, the maximum number of packets
to include in a single redundancy packet; and finally a
list of known redundancy schemes (such as XOR, Reed-
Solomon [14], or Tornado Codes [8]). The server then
replies with a W packet, agreeing to the proposed r and
k values, but supplying only one FEC scheme: a scheme
which both the client and server support which will be
used for future redundancy packets.

Connection Association. The second stage is “connec-
tion association.” Since the client and server may have
several active connections between them at once, any re-
dundancy packets sent must be associated with one of
the connections between client and server. Either client
or server may initiate connection association as soon as
a SYN packet has been transmitted and received for the
primary data connection. To initiate connection associ-
ation, an end host transmits a control packet with the C
— “Connection Association” flag set. In the fields for a
Connection Association request, the sender includes five
values which should uniquely identify the data channel

2 A server could just as easily initiate channel establishment. How-
ever, as clients are often behind NAT's, channel establishment is more
likely to be successful when initiated by the client. In P2P scenarios, one
could extend channel establishment to make use of hole-punching and
port-mapping protocols [16, 18]; as these techniques are well-known,
they are not relevant to the contribution of this work.

[TTTTTTITTITTITTITT LT Ja

Reserved

OHHHHH

|
Version ‘ 1|W|P l C

FlowID
(Fields)

W: “Want FEC” Fields
r | k| FECScheme1 | FEC Scheme?2
P: “Plug” Fields
Packet ID 1] Packet ID 2 |
‘ C: “Connection Association” Fields (from Primary Channel) ‘
IPID Window Size

SrcPort DstPort

FEC Scheme 3_|

Initial Sequence Number (ISN)

Fig. 4: Packet formats in FEC channel.

the sender wishes to enable FEC for. These fields are the
IPID value for the first packet in the data channel, the first
window size announced in the data channel, the source
and destination ports from the data channel, and the initial
sequence number from the data channel. The sender also
includes a FlowID which will henceforth be included in
all redundancy packets for data from the specified channel.
Under IPv4, FlowlD is an arbitrary 32-bit value randomly
generated by the sender; under IPv6 it is the FlowID value
from the data channel.

In the simplest case — where there are no middleboxes
present and the client and server have only one connec-
tion between them — connection association is merely a
quick step to establish a FlowID. When there are multiple
data connections present between the server and client,
the receiver uses the appended options data to determine
to which connection the new FlowID should apply. Al-
though traditionally the traditional flow identifier is the
classic ‘five-tuple’ (protocol, Src/Dest IP, and Src/Dest
port), we choose to use the initial IPID value as our pri-
mary identifier since it is the field least often modified by
middleboxes: in a recent study IPID was been observed to
be modified by middleboxes in than 1% of paths [1]. For
the rare cases where IPID fails to identify a connection,
we also include the initial window size, the full tuple,
and the initial sequence number — any of which may be
modified, but are unlikely to all be modified at once.
Redundancy Transmission. After Connection Associ-
ation, either sender (or both) may begin sending FEC
redundancy packets. Redundancy packets are sent after
every k packets (for k£ negotiated in the Channel Establish-
ment phase), or pre-emptively after 10ms of idleness (if

MBox Behavior Probability 2 | FL
NAT Src IP Rewrite 90% [10,11] | F | F
Src Port Rewrite 27% [10] F | F
Compression - F | F
WAN Opt. Protocol Accel. - 1 | Al
IPID Rewrite 0.025% [1] I | F
TCP Opt. Rewrite | 4-14% [9] F |1
Firewall IP Opt. Rewrite 34-66% (7] F | F
Seq. No. Rewrite 7-18% [9] F | F
Port Filtering 5.9% [10] I | F
Gap Monitoring 24-33% [9] F | F
Dup. Interference 1-13% [9] F | Al
Inline Caching 7.6% [10] I | Al
Proxy Conn. Termination | 2.7% [10] I |1
Resegmentation 1-13% [9] I | A1

Table 1: Protocol compatibililty with common middlebox be-
haviors. ‘Probability’ indicates observed fraction of end hosts
behind middleboxes with named behavior. For each protocol,
‘F’” indicates ‘Friendly’, ‘I’ indicates ‘Incompatible’ (but not ad-
verse - the protocol fails over to standard TCP), and ‘A’ indicates
adverse (the connection is unable to proceed).

there remain no more packets in the transmission buffer).
The receiver checks the stored k packets against the check-
sums listed in the redundancy packet to protect against
payload-modifying middleboxes (such as proxies) — if
the receiver attempted to regenerate a dropped packet
using proxy-manipulated packets, it might generate in-
valid data. If a packet is missing and k stored packets are
valid, the receiver uses this information to recover the lost
packet(s).

The receiver sends a P (‘Plug’) packet whenever a re-
dundancy packet is used for loss recovery: the Plug packet
contains a list of which packets were recovered so that the
sender may re-transmit these lost packets. The sender re-
transmits the lost packets, despite the fact that they have
already been recovered, in order to ensure that any inter-
mediary middleboxes keeping session state can note the
transmission of that sequence number.? Every estimated
RTT, the sender re-sends Plug packets with a list of all
‘gap’ packets until there are no remaining gaps. Redun-
dancy transmission phase continues until the connection
terminates, at which point FEC is done.

3.2 Deployability

Having described some key design choices in our proto-
col, we now evaluate the deployability of 2CFEC using
data from Honda et al. [9] and Kreibich et al. [10] on
common edge-network middlebox behaviors in the wild.
We present our analysis of our 2CFEC (column ’2’), in
comparison to the single-channel FEC implementation by
Flach et al. (column "F1.”) [6], in Table 1. The table shows
common protocol manipulations broken down by the type

3This technique is also proposed by Flach et al. [6]

of middlebox with which they are most commonly asso-
ciated. If known, we present the observed probability of
this behavior in the wild.

Both protocols are friendly under typical NAT behav-
iors. It is theoretically possible that a NAT might rewrite
the source address of the data channel and the FEC chan-
nel to different addresses, but that has not been typically
observed in practice.*. Under these conditions, 2CFEC
would fail back to basic TCP for security reasons.

Neither protocol is friendly when a middlebox changes
payload contents, such as via any proxying behavior, or
when protocol acceleration injects new packets. This be-
havior is a fundamental incompatibility with FEC, as
packet payload contents at source and receiver no longer
match. We note that while the Flach design as presented
is technically adverse as presented in the paper — it would
result in incorrect data being delivered to the receiver
— the design could easily be extended to include packet
hashes (as 2CFEC does) to safeguard against incorrect
data being delivered.

Firewall/IPS behaviors are the most varied. 2CFEC
is incompatible when (a) IPID is rewritten (and there
are two or more connections to the server, and the basic
five-tuple, window size, and initial sequence number are
rewritten simultaneously — <0.025% of cases), or (b)
when access to unknown ports is restricted — 5.9% of
cases. One could extend the protocol to transmit the FEC
channel over HTTP (port 80) [13], which is less frequently
restricted: only 3.6% of the time [10]. The Flach design
is incompatible when TCP Options are rewritten (4-14%
of cases, most often when the data channel is over port
80) or when the firewall does not allow duplicate, non-
matching packets with the same sequence number (1-13%
of the time, once again with more interference over port
80 connections).

Overall, both protocols succeed when faced with NAT,
neither succeeds when faced with proxying or protocol
acceleration, and 2CFEC is more often successful when
faced with firewalls, but both protocols success is depen-
dent on the particular configuration of the Firewall/IPS.

Before moving on, we note one further class of mid-
dlebox which is not common in end-user networks, but
data centers: load balancers. If a load balancer is config-
ured to direct traffic from a single client over multiple
servers (rather than ‘pinning’ individual clients to servers),
this too will break 2CFEC. However, as data centers are
typically under a single administrative domain, it seems
unlikely that an administrator choosing to deploy 2CFEC
on their servers would leave their firewalls configured

4The only evidence for this type of mapping found inconsistent
IP addresses between connections for <1% of clients over the course
of multiple experiments, but the authors were unable to distinguish
whether these inconsistent IP addresses were from a NAT with multiple
IP addresses or if it was due to user mobility. [10]

Sender Receiver

Browser |m=m)| TCP
2

‘ TCP “ ‘ Web Server

iptables iptables
netfiter queue | ‘ P ‘ P (=== | netfilter queue
00Oooo ‘ = el
Y t oooo'o
kdata [] rFEC q A
packets packets Driver (03O Driver

Fig. 5: Architecture diagram.

so as to be incompatible. This contrasts to the end-user
network scenario, where administration for end hosts and
network middleboxes is managed by separate parties and
thus the trouble of incompatibility.

3.3 Implementation & Evaluation

We built a prototype of 2CFEC to test its expected im-
provements in FCT (§2). Both sender and receiver use
netfilter_queue to manipulate the packet stream.
netfilter_queue (combined with iptables) captures
packets upon arrival and enqueues them for inspection;
from there the developer can use netfilter_queue
to drop, inject, or modify packets before releasing them
back to the protocol stack and up to the transport layer.
Our code stores copies of the last k& packets and uses
these packets, in combination with redundancy packets,
to re-inject missing packets and pass them up to the TCP
layer. Missing packets are passed up with an ECN flag set,
in order not to interfere with TCP’s congestion control.
Redundancy packets are dropped once no longer useful.
Figure 5 shows an architecture diagram of our prototype.
Our current scheme encodes redundancy into the channel
using Reed-Solomon codes.

Our primary goal in building our prototype was to see
whether a two-channel FEC design could provide compa-
rable performance to an idealized FEC implementation
that recovers all lost packets; as in §2 we quantify gains
from FEC both in terms of flow completion times.

We evaluate 2CFEC with microbenchmarks: the impact
of 2CFEC on individual flow completion times, shown in
Figures 6(a) and (b). For smaller flow sizes, flow comple-
tion times using 2CFEC are very close to the ideal at both
1 and 3% loss. For larger flow sizes (50-100KB), perfor-
mance significantly improves over the baseline TCP, but
fails to quite reach ideal performance in call cases. This
results from the fact that in longer flows, the probability
of multiple loss events coinciding — resulting in an unre-
coverable loss — increases in probability. Overall, these
results indicate that 2CFEC provides substantial gains —
often near optimal — despite the potential overheads of
the two-channel approach.

w
-~ 16
© | NoLoss mmmmm
£ 1.4 FEC ==
= 12} NoFEC ===
5 T
B 08 i
g— 0.6 m O T
§ o4 T i ﬂ U o
S S |
3 ‘ ‘ ‘ ‘ ‘ ‘
o 0 5 S 75 15 S Top
Flow Size (KB)
(a) 2% packet loss
w
© 25 No Loss s
£ o | FEG === i
= No FEC =
s 15 T]
5 :
[} 1 T
£ H 8
5 _f &
S 05 g .0 =
% 0 _TD _TD i _:‘: _‘ .
o 75 8 75 15 S0 700
Flow Size (KB)
(b) 5% packet loss

Fig. 6: 2CFEC FCTs compared with baseline TCP and with
ideal performance. Testbed used 10Gbps BW/100ms RTT links;
boxplots show 1-5-50-95-99 percentiles.

4 Discussion

As we have shown, our dual-channel FEC approach can
effectively work around many deployability issues im-
posed by middleboxes while still providing strong im-
provements in FCT compared to TCP. We now conclude
with a discussion of 2CFEC and the dual-channel ap-
proach.

Does 2CFEC incur bandwidth overhead?

Like all FEC schemes, 2CFEC introduces some band-
width overhead. 2CFEC’s overhead comes from both the
FEC encoding itself (which all designs will introduce),
as well as additional control overhead such as the con-
nection association and plug packets (due to the two-
channel approach and our design specifically). Nonethe-
less, 2CFEC’s overhead is reasonable; assuming a 10 KB
flow, the bandwidth overhead over the single-channel ap-
proach is only around 2%.

Does the dual-channel approach introduce design or
implementation complexity?
Using two separate channels for a single flow implies that
we need to be able to correlate the secondary channel with
the primary channel. As we discussed, the IPID field is
today a reliable identifier, but may not remain so for the
future. For this reason, we include additional data which
may be aesthetically ‘bulky’, but is necessary to ensure
channel association succeeds whenever possible.

In terms of implementation complexity, the dual-
channel approach when combined with FEC was fairly
clean. As the primary channel retains its original func-

tionality, the implementation of secondary channel can
be completely decoupled to the primary one. In our im-
plementation, 2CFEC did not require any modifications
to the original TCP sender/receiver code. As compared
to the single-channel approach, our 2CFEC implemen-
tation can be readily applicable to any TCP variants, or
even UDP-based applications. This may not be the case
for all dual-channel designs, but in our case, the decou-
pled design made implementation easier rather than more
difficult.

Is the dual-channel approach completely middlebox-
friendly?

No. In our analysis in 3.2 we show that there remain a
few situations (inconsistent load balancers, proxies, and
complete port rewriting) where 2CFEC must fail back to
normal TCP. To the best of our knowledge, there are no
situations where 2CFEC is middlebox-adverse.

We note that “terminal” proxies (those which masquer-
ade as a connection endpoint to client and server) present
both a challenge and an opportunity to the deployment of
new protocols in general. A proxy which does not support
a new protocol effectively blocks use of a new protocol,
but a proxy which does support a new protocol can enable
its use for one endpoint even when the other endpoint
does not support it. For example, a network administrator
whose end hosts support 2CFEC may choose to deploy
a proxy which supports 2CFEC in order to provide loss
recovery for packets which are lost at the edge.

More commonly though, middleboxes remain a chal-
lenge using all known design approaches. While the dual-
channel approach may be effective today, nothing prevents
future middleboxes from introducing new changes with
new negative consequences for protocol design. We still
believe that it is important to continue discussion of how
to design for today’s deployment scenarios. However, it is
likely that the only path to return to the originial flexibil-
ity of the Internet may be to improve design processes to
include protocol designers in the decision making within
middlebox design and network administration.

Can we apply the dual-channel design approach to
other extensions?

By the definition of the dual-channel approach, the pri-
mary channel must retain its TCP byte-stream semantics.
Extensions that require modifications to the original data,
such as compression of the TCP payload, cannot benefit
from the dual-channel approach.

However, we expect that many TCP extensions can
be implemented in a more middlebox-friendly way with
the dual-channel approach. Flows which simply need to
attach more control data can follow the same blueprint
as our FEC design: establishing a secondary channel,
performing connection association using the same identi-
fying bits as our design, and then transmitting protocol-

specific data over the secondary channel. We are currently
exploring designs for SACK (where selective ACK values
are sent over the secondary channel rather than the TCP
header), and a multipath TCP design.

References

[1] Personal Comm., Gregory Detal. 19 Jun 2013.

[2] M. Al-Fares, K. Elmeleegy, B. Reed, and I. Gashinsky. Overclock-
ing the Yahoo!: CDN for faster web page loads. In Proc. IMC,
2011.

[3] L. Baldantoni, H. Lundqvist, and G. Karlsson. Adaptive end-to-
end FEC for improving TCP performance over wireless links. In
1IEEE Communications, volume 7, pages 4023-4027, 2004.

[4] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Denf, J. Benitez, U. Michel,
H. Damker, K. Ogaki, T. Matsuzaki, M. Fukui, K. Shimano,
D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Min-
erva, A. Manzalini, D. Lopez, F. J. R. Salguero, F. Ruhl, and P. Sen.
Network Functions Virtualization: An Introduction, Benefits, En-
ablers, Challenges & Call for Action. http://www.tid.es/
es/Documents/NFV_White_PaperV2.pdf, Oct. 2012.

[5] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Don-
net. Revealing Middlebox Intererence with Tracebox. In Proc.
IMC, 2013.

[6] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan.
Reducing Web Latency: the Virtue of Gentle Aggression. In Proc.
SIGCOMM, 2013.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and 1. Stoica. IP
Options are Not an Option. UC Berkeley Technical Report No.
UCB/EECS-2005-24.

[8] R. Gallager. Low-Density Parity-Check Codes. Transactions on
Information Theory, 8(1):21-28, 1962.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greengalgh, M. Handley, and
H. Tokuda. Is it still possible to extend TCP? In Proc. IMC, 2011.

[10] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
Illuminating The Edge Network. In Proc. IMC, 2010.

[11] G. Maier, F. Schneider, and A. Feldman. NAT usage in Residential
Broadband Networks. In Proc. PAM, 2011.

[12] V. Paxson. Bro: A system for detecting network intruders in
real-time. In Computer Networks, pages 2435-2463, 1999.

[13] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the Narrow Waist of
the Future Internet. In Proc. ACM HotNets, 2010.

[14] 1. S. Reed and G. Solomon. Polynomial Codes Over Certain
Finite Fields. Journal of the Society for Industrial & Applied
Mathematics, 8(2):300-304, 1960.

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proc. SIGCOMM, 2012.

[16] P. Srisuresh. State of Peer-to-Peer (P2P) Communication across
Network Address Translators (NATs). RFC 5128.

[17] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold Story
of Middleboxes in Cellular Networks. In Proc. SIGCOMM, 2011.

[18] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk.
Port Control Protocol (PCP). RFC 6887.

