
NADA Fairness: Analyzing the Future of WebRTC
Serena Vincent (Spelman College) , Adithya Phillip, Rukshani Athapathu, Justine Sherry, Srinivasan Seshan

{svincent}@scmail.spelman.edu, {dathapat}@andrew.cmu.edu, {aphilip, sherry, srini}@cs.cmu.edu
Carnegie Mellon University

1. INTRODUCTION
Real-time communications are increasing over the web and there
is no standard congestion control algorithm defined for WebRTC
(eg., video conferencing and live stream), leaving services to find
their own CCA to use when implementing their platform.
However, there is no standard congestion control algorithm
(CCA) defined for WebRTC, leading to services having to create
or find their own CCA to use on their platform. Hence, the IETF
is considering three algorithms to become the standard for
WebRTC: SCReAM [1], GCC [5], and Network-Assisted
Dynamic Adaption (NADA) [6]. NADA’s core congestion
algorithm creates a unified congestion signal, including packet
loss, queuing delay, and explicit congestion notification (ECN)
markings [3]. NADA takes this approach in hopes of being able to
react to fast changes in the network, allow for weighted
bandwidth sharing for multiple competing video streams, and
sustain a significant amount of bottleneck bandwidth when
competing with TCP [6]. NADA is one of the algorithms being
considered, but we do not know if it is fair to other CCAs when a
NADA flow competes with a legacy CCA. Earlier work on
congestion control intends to satisfy two criteria for real-time
media traffic: TCP-friendliness (outgoing rate is equal to a
comparable TCP flow) [4] and media-friendliness (media
streaming rate stays smooth) [2]. Our focus is on the former,
TCP-friendliness, and it leads to the question: Is NADA fair to
other algorithms deployed on the Internet?

 We answer this question by studying NADA in a controlled
ns-3 environment against TCP Reno, TCP Cubic, and itself,
varying testbed configurations to understand if NADA is fair
enough to be considered the standard algorithm for WebRTC. We
found that NADA usually takes less than its fair share of
bandwidth, but in some situations, like competing against multiple
NewReno flows, can take more than its fair share.

2. SETUP
We used a discrete event network simulator, ns-3, to model a
simplified version of real-time media congestion and evaluate
real-time media CCAs in a simulation environment. This
ns3-rmact implementation is created by Cisco and sends fake
codec data to simulate a RTC environment. A sender application,
RmcatSender , sends media packets of fake video codec data to
the receiver application, RmcatReciever . The receiver
application gets a sequence of packets and timestamp information,
sending it back to the sender in feedback packets. The CCA
running on the sender processes feedback information to obtain
the bandwidth estimation, using this information to estimate to
control the fake video encoder. We used point-to-point wires in
ns-3 to implement a dumbbell network topology. The simulation
environment consists of a 10 Mbps bottleneck link that runs for
100 seconds. We configure NADA with a maximum encoding rate
of 20 Mbps and a minimum encoding rate of 150 Kbps.

Figure 1: Bandwidth (BW) share for NADA vs TCP NewReno
at default parameters

Figure 2: NADA v TCP NewReno BW share when varying
NADA’s minimum BW parameter

Figure 3: BW share for NADA v Cubic flows with default
parameters

Figure 4: BW share for NADA v Cubic flows with a buffer
size of 187.5 and 375+ packets with default parameters

3. RESULTS
NADA vs TCP NewReno
Depending on the configuration, NADA can take as little as 17%
and as much as 99% of the fair share. Hence, NADA’s behavior
ranges from very unfair to very fair (generous). Figure 1 shows
the percentage in bandwidth for two competing flows sharing the
same bottleneck link. NADA is much more complacent when
using the bottleneck link and performs poorly when competing
against NewReno.

 When testing NADA vs. TCP NewReno with varying buffer
sizes, we found that varying the queue size for a small bottleneck
bandwidth (1.5 Mbps) can increase the NADA rate. However,
when the link is at the default link rate (10 Mbps), NADA stays at
the same rate, continuously taking a bit more than 17% of the
bandwidth versus the 83% for NewReno.

 Surprisingly, an increase in NADA’s minimum bandwidth value
can make NADA extremely unfair. Figure 2 shows competing
NADA and NewReno flows, doubling from 75 Kbps for each
experiment. Both flows take their fair share of the bandwidth
when the minimum is around 5 Mbps, but the higher the
minimum, the greater amount of bandwidth NADA takes.

 We also found that the more NewReno flows that compete with
a NADA flow, the more bandwidth NADA takes. Figure 5
displays this surprising finding, demonstrating that NADA takes
around 80% of the bandwidth, leaving only 20% for the five
NewReno flows. This shows NADA is unable to fairly allocate
bandwidth to multiple competing flows.
NADA vs TCP Cubic
When NADA’s core algorithm competes with TCP Cubic, it
continues to take less than its fair share, only consuming around
one-third of the bottleneck link, as seen in Figure 3.

 For testing NADA against Cubic with varying queue sizes, we
found that NADA continuously takes less than its fair share of
bandwidth for all buffer sizes above 375 packets, but for a buffer
size below that, the queue size is too small to accommodate
NADA and Cubic at steady rates, as seen in Figure 4.

 Varying NADA’s minimum bandwidth produces similar results
as compared to TCP NewReno, fair around 5 Mbps, but
increasingly becomes more unfair and takes more bandwidth
away from TCP Cubic.
NADA vs NADA
Figure 6 shows NADA versus itself with one fixed RTT flow and
another with a varying RTT, finding that a NADA flow with a
fixed RTT is able to accommodate other NADA flows with
sluggish responses. This is unusual when comparing to NewReno,
as NewReno is known for being unfair to competing flows with
higher RTTs. Knowing this, NADA streams with varying response
times will be able to coexist with each other if deployed on the
Internet more fairly than NewReno flows coexist with each other.

4. CONCLUSION & FUTURE WORK
We seek to understand if NADA is fair enough to be considered
the standard for WebRTC and if it can be deployed across the
Internet. We tested its fairness against other widely deployed
algorithms while varying various network and protocol properties
and found NADA does not take its fair share of the bottleneck link
when competing against a few widely deployed algorithms on the
Internet. In future work, we plan to test this algorithm against
more CCAs (e.g., BBR, SCReAM, GCC) and consider varying
other network properties (e.g., measuring packet loss). We also
plan to investigate why NADA is aggressively taking bandwidth
when competing with multiple Reno flows.

Figure 5: Rate for one NADA vs five Reno flows sharing a
bottleneck link with default parameters

Figure 6: Rate for two competing flows sharing a bottleneck
link with a fixed (yellow) and varied (blue) RTT flow

5. REFERENCES
[1] I. Johansson, Z. Sarker, and Ericsson AB, “Self-Clocked

Rate Adaptation for Multimedia,” RFC 8298 (Experimental),
Dec. 2001.

[2] J. Yan, K. Katrinis, M. May, and B. Plattner, “Media- and
TCP-friendly congestion control for scalable video streams,”
IEEE Trans. Multimedia , vol. 8, no. 2, pp. 196–206, Apr.
2006.

[3] K. K. Ramakrishnan, S. Floyd, and D. Black, “The addition
of explicit congestion notification (ECN) to IP,” RFC 3168
(Proposed Standard), Sep. 2001.

[4] S. Floyd, M. Handley, J. Pahdye, and J. Widmer, “TCP
friendly rate control (TFRC): Protocol specification,” RFC
5348 (Proposed Standard), Sep. 2008.

[5] S. Holmer, H. Lundin, G. Carlucci, L. De Cicco, and S.
Mascolo, “A Google Congestion Control Algorithm for
Real-Time Communication,” Internet-Draft (Informational),
Jan. 2017.

[6] X. Zhu, R. Pan, M. Ramalho, and S. Mena,
“Network-Assisted Dynamic Adaptation (NADA): A Unified
Congestion Control Scheme for Real-Time Media,” RFC
8698 (Experimental), Feb. 2020.

