MaxSAT Evaluation 2017: Solver and Benchmark Descriptions, volume B-2017-2 of Department of Computer Science Series of Publications B, University of Helsinki 2017.

Lisbon Wedding:
Seating arrangements using MaxSAT

Ruben Martins
Carnegie Mellon University
rubenm@cs.cmu.edu

Abstract—Having a perfect seating arrangement for weddings
is not an easy task. Can Alice sit next to Bob? Can we
ensure that Charles and his ex-girlfriend Eve not be seated
together? Meeting such constraints is classically one of the
most difficult tasks in planning a wedding — and guests will
not accept ‘it’s NP-complete!” as an excuse for poor seating
arrangements. We discuss how MaxSAT can provide the optimal
seating arrangement for a perfect wedding, saving brides and
grooms (including the authors) from hours of struggle.

I. INTRODUCTION

This benchmark description describes the encoding used for
the wedding seating arrangement for our wedding in Lisbon.
We needed to seat our guests according to a long list of
constraints. For example, members of the same family should
sit together; friends who went to school together should sit
together; individuals with a history of conflict should be seated
apart; etc. We wanted to maximize the happiness of our guests
and what better way to do that than to encode the problem
into MaxSAT! MaxSAT was an ideal solution for our own
wedding: 1) it saved us tens of hours, ii) it was stress free, and
iii) in the rare case that a guest complained about their seating
arrangement, we just blamed the algorithm!'

II. MAXSAT ENCODING

When making a seating arrangement, we first need to define
the size of each table and how many guest we have. Assume
that our guests are defined by the set P and the tables are
defined by the set T'. Each table has at least [guests and at
most u guests.

Variables. We define our variables as being p;, meaning that
guest p is seated at table t. For simplicity, we do not consider
where each person is seated at each table but only if a given
person p is seated or not at table t. To characterize our guests,
we use a set of auxiliary variables S that denotes characteris-
tics of each person, namely s} denotes the characteristics of
person p, seated at table .

Hard constraints. The hard constraints define the shape of
each table and guarantee that each guest will be seated in
exactly one place.

o Each guest will be seated at exactly one table:

'While we were convinced that the algorithm’s output was optimal, our
guests were not all so enlightened.

25

Justine Sherry
Carnegie Mellon University
sherry@cs.cmu.edu

vpeP Zpt =1

teT

o Each table will have at most u guests:

thT Zpt <u

peEP

o Each table will have at least [guests:

Vier D op >l

peP

Since some guests may have disagreements with each other,
we also included some exclusion constraints that guarantee
that guests which have conflicts with each other are not seated
in the same table. For every pair of guests p and p’ that have
a conflict with each other we include the following constraints
that guarantee that they will not seat together:

Vier(p +1, < 1)

To enforce that if a person p is seated at table ¢ then ¢
will contain all labels belonging to p we add additional hard
constraints that enforce that table ¢ will contain all the labels
from guests that are seated there:

vteTvpe vaes,, (pr =)

Soft constraints. The soft constraints describe the common-
alities between guests that share a table. We attach a set of
labels to each person that describes her. Example of labels
are: spoken languages, university they attended or family last
name. Our goal is to minimize the number of labels in each
table, i.e. we want to maximize what guests have in common
at each table. Let S; be the set of labels that can occur in table
t.

e Minimize the number of labels in each table:

min : E E S
teT

SES:

Since some labels may be more important than other (e.g.
spoken language), we may associate a different weight to each
label.

III. GENERATOR

We iteratively generated our constraints, adding additional
labels or marking guests as in conflict and feeding them to the
MaxSAT solver until we arrived at a solution we were happy
with. We generated 30 versions of our seating arrangements
based on these iterative versions. The generator takes as input:
i) the number of tables, ii) the minimum number of guests per
table, iii) the maximum number of guests per table, iv) a .csv
file with the list of guests and the labels associated with each
guest, v) a .txt file with weights for each label, and vi) a .txt
file with a set of conflicting labels so that those guests are not
seated together.

The problem was encoded using a pseudo-Boolean for-
malism and translated to MaxSAT using the Open-WBO
framework [1]. The following encodings are used by Open-

26

WBO to convert a pseudo-Boolean formula to MaxSAT: 1)
Ladder encoding [2], [3] (at-most-one constraints), ii) Modulo
Totalizer encoding [4] (cardinality constraints) and iii) Gener-
alized Totalizer encoding [5] (pseudo-Boolean constraints).

REFERENCES

[1] Ruben Martins, Vasco Manquinho, Ines Lynce: Open-WBO: A Modular
MaxSAT Solver. SAT 2014: 438-445

[2] Carlos Ansotegui, Felip Manya: Mapping problems with finite-domain
variables into problems with boolean variables. SAT 2004: 115

[3] Ian Gent, Peter Nightingale: A new encoding of All Different into SAT.
ModRef 2004

[4] Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hi-
roshi Fujita: Modulo Based CNF Encoding of Cardinality Constraints and
Its Application to MaxSAT Solvers. ICTAI 2013: 9-17

[5] Saurabh Joshi, Ruben Martins, Vasco Manquinho: Generalized Totalizer

Encoding for Pseudo-Boolean Constraints. CP 2015: 200-209

