
acmqueue | march-april 2016 76

research for practiceRFP

R
eading a great research paper is a joy. A team of
experts deftly guides you, the reader, through the
often complicated research landscape, noting the
prior art, the current trends, the pressing issues
at hand—and then, sometimes artfully, sometimes

through seeming sheer force of will, expands the body of
knowledge in a fell swoop of 12 or so pages of prose. A great
paper contains a puzzle and a solution; these can be useful,
enlightening, or both. A great paper is a small, structured
quantum of human ingenuity, creativity, and labor, in service
of a growing understanding of our world and the future
worlds we may inhabit.

Unfortunately, information overload is a defining
problem of our time, and computer science research is no
exception. The volume of research produced each year in
computer science is heartening, but it can be difficult to
determine which papers are most deserving of our scarce
time. This volume of papers is also at odds with many of the
best elements of paper reading: distillation of work to its
critical essence, thoughtful consideration of its nuances
and the context in which the research was performed, and
application of concepts to one’s own technical problems and
experiences.

As a result, the past few years have seen a rise in interest

Expert-curated
guides to the
best of CS
research

1 of 15
TEXT
ONLY

Introducing
Research for Practice

RFP

acmqueue | march-april 2016 77

research for practiceRFP

and organizations—such as Papers We Love and its many
chapters—devoted to the joy and utility of reading computer
science research: curated-paper discussions have escaped
the traditionally academic “reading seminar” format and
have been supplanted by groups of hundreds of participants
meeting regularly, at startups and community centers, to
discuss the latest and greatest computer science research.
This is exciting. Why should the greatest of papers be enjoyed
only in academia? As a public good, research should be read,
discussed, digested, and enjoyed by all interested parties.

ACM has a particularly important role to play in this
democratization of access to research. First, the ACM
Digital Library is the largest collection of computer science
research in the world, with hundreds of thousands of papers,
articles, and manuscripts. Second, the ACM membership
consists of world experts across all subfields of computer
science, from Turing laureates to ACM Fellows, from upstart
academics to engineers on the cutting edge of practice.
Separately, these are unparalleled resources; put together,
they are even more extraordinary.

Research for Practice is born from the potential of this
combination. In every RfP column, two experts will introduce
a short curated selection of papers on a concentrated,
practically oriented topic. Want to learn about the latest
and greatest developments in operating systems for data-
center workloads? RfP will provide an essential crash
course from a world authority by describing the trends
in this space, selecting a handful of papers to read, and
providing motivation and the critical insights behind each.

2 of 15

acmqueue | march-april 2016 78

research for practiceRFP

This approach is designed to allow you to become fluent in
exciting topics in computer science research in a weekend
afternoon. In addition, ACM has graciously agreed to provide
open access to any Research for Practice paper citations
available in the ACM Digital Library. Each installment will
cover different topics from different volunteer experts, and
we intend to cover the entire range of computer science
subfields.

This issue of acmqueue magazine contains the first
installment of Research for Practice. Were you curious
about the data-center operating system trends I just
mentioned? You’re in luck: Simon Peter has a fantastic
selection on this topic, including papers on the interplay
between emerging I/O subsystems and the kernel, principles
for multicore scalability, and systems possibilities for new
secure computing hardware. In addition, Justine Sherry
has contributed an exciting selection on network functions
virtualization: our networks are getting smarter, aided
by increasingly complex in-network software. This allows
functionality beyond traditional network “middlebox”
operation, including complex routing and policy deployment
and cryptographically secure and private packet processing.
Both of these selections highlight practical yet principled
research papers. We’re especially pleased by how accessible
each of our experts has made these otherwise highly
technical topics.

Research for Practice is itself an ongoing experiment.
We’re inspired by the widespread and growing enthusiasm
about computer science research as well as the role ACM,

3 of 15

acmqueue | march-april 2016 79

research for practiceRFP

its members, and the acmqueue readership can play in
amplifying this excitement. We welcome your feedback, and
please enjoy! —Peter Bailis

DATA CENTERS ARE CHANGING THE WAY
WE DESIGN SERVER SYSTEMS

BY SIMON PETER

T
he growing number of cloud service users and
volume of data are putting tremendous pressure
on I/O, processing, and integrity. Hardware has
kept pace: data-center networks allow servers
to transmit and receive millions of requests per

second with microsecond delivery latencies. An increasing
number of processors multiplies server-processing
capacities, and new technologies such as Intel’s Software
Guard Extensions (SGX) help keep sensitive data confidential.
As a result, operating systems need to provide these new
technologies to applications scalably and efficiently.

The following papers introduce thought-provoking OS
design paradigms that address each of these trends. First
we attack the I/O performance problem. We then introduce
a handy software-interface design rule that ensures
that constructed software can scale with the number of
processors present in data-center servers. Finally, we learn
how to protect the integrity of sensitive data, even from
access by the cloud operator. We conclude with an outlook
on how these paradigms enable an ecosystem of execution

4 of 15

acmqueue | march-april 2016 80

research for practiceRFP

environments for data-center applications.

Dealing with the data deluge
Peter, S., et al. 2014. Arrakis: the operating system is the
control plane. Usenix Symposium on Operating Systems
Design and Implementation.
https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/peter

Belay, A., et al. 2014. IX: a protected dataplane
operating system for high throughput and low latency.
Usenix Symposium on Operating Systems Design and
Implementation.
https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/belay

These papers discuss the design of operating systems
that provide high I/O performance to request-intensive
server applications. The authors find that the complexity
of monolithic OS kernels is the biggest barrier to server I/O
performance and remedy the situation by introducing an I/O
model that bypasses the kernel in the common case without
losing any of its protection guarantees. Both papers split
the OS into a control and a data plane: A kernel-level control
plane carries out access control and resource management,
while a user-level data plane is responsible for fast I/O
mechanisms.

The papers differ in how network I/O policy is enforced.
Arrakis reaches for utmost performance by relying on
hardware to enforce per-application maximum I/O rates and

5 of 15

acmqueue | march-april 2016 81

research for practiceRFP

allowed communication peers. IX trades performance for
software control over network I/O, thus allowing the precise
enforcement of the I/O behavior of a particular network
protocol, such as TCP congestion control.

Both OS models do extremely well supporting an
emerging bit of cloud infrastructure: containers. Containers
bundle all required components of an application into a
manageable unit. Arrakis and IX empower containers to use
all I/O capabilities of the underlying server hardware without
the overhead of a monolithic OS kernel.

Keeping all processors busy
Clements, A. T., et al. 2013. The scalable commutativity rule:
designing scalable software for multicore processors.
ACM Symposium on Operating System Principles.
http://dl.acm.org/citation.cfm?id=2699681 [link to http://
queue.acm.org/rfp/vol14iss2.html]

Many OS researchers have worked on the problem of using
an increasing number of processor cores to handle growing
workload demands. Manually identifying and working
around scalability bottlenecks caused by shared resource
contention in implementations has often been the answer.
This paper asks a different question: Can APIs have an impact
on software scalability? The surprising answer is that the
impact is not only profound, but also fundamental.

The paper distills its insight into a simple yet effective
software-development rule: whenever interface operations
commute, they can be implemented in a way that scales. The

6 of 15

acmqueue | march-april 2016 82

research for practiceRFP

authors provide a tool that helps developers apply the rule
by generating test cases that find scalability bottlenecks
in commutative API implementations. They use the tool to
evaluate the POSIX API and point out where the API has the
ability to scale but its OS implementation hits a bottleneck.
They employ the results to develop a new OS that is
practically free of scalability bottlenecks.

The scalable commutativity rule applies not just to the
design of operating systems, but also to any multicore
software system. It should thus be part of the toolkit of any
multicore application developer.

Keeping sensitive data confidential
Baumann, A., et al. 2014. Shielding applications from an
untrusted cloud with Haven. Usenix Symposium on Operating
Systems Design and Implementation.
https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/baumann

Customers trust their cloud providers not to expose any
of their data—a tall order, given the staggering complexity
of the cloud hardware/software platform. Bugs may easily
compromise sensitive data. This paper introduces Haven, a
software system that protects the integrity of a program
and its data from the entire cloud-execution platform, except
for a small trusted block of firmware

To achieve this, Haven uses the recently introduced Intel
SGX technology to develop a non-hierarchical OS security
model that allows applications to run in a secure region of

7 of 15

acmqueue | march-april 2016 83

research for practiceRFP

memory that is protected from outside access, including
privileged software such as OS kernels and hypervisors. To
support execution on top of an untrusted OS kernel, Haven
introduces a mutually distrusting kernel interface that
applications access via a user-level library that provides the
Windows API.

Haven introduces a new way of protecting data
confidentiality. While previous attempts use encryption
techniques such as homomorphic encryption to compute on
encrypted data in limited cases, Haven relies on hardware-
protection technology to address the problem in a more
general way.

An ecosystem of application execution environments
These papers establish a new baseline for data-center OS
design. Not the traditional Unix model where processes run
on top of a shared kernel invoked via POSIX system calls,
but protected software containers using scalable library
invocations that map directly to hardware mechanisms allow
applications to break out of existing OS performance and
protection limitations.

This new OS design has the potential to enable an
ecosystem of library execution environments that support
applications in various ways. For example, a fast library
network stack may be linked to a web server to improve
its webpage delivery latency and throughput. A Haven-like
system call library may be linked to protect the integrity of
confidential data held by the application. Finally, a scalable
storage stack may be linked to a database to allow it to keep

8 of 15

acmqueue | march-april 2016 84

research for practiceRFP

pace with the throughput offered by parallel flash memory.
In many cases, these libraries can improve application
execution transparently. Together, these new execution
environments have the potential to allow applications to
match the performance and integrity demands of current
and future data-center workloads.

NFV AND MIDDLEBOXES

BY JUSTINE SHERRY

W
e usually think of networks as performing
only one task: delivering packets from sender
to receiver. Today’s networks, however, do
a lot more by deploying special-purpose
middleboxes to inspect and transform packets,

usually to improve performance or security. A middlebox
may scan a connection for malicious behavior, compress
data to provide better performance on low-resource mobile
devices, or serve content from a cache inside the network to
reduce bandwidth costs. Both industry and research sources
have recently begun to refer to the features implemented
by middleboxes as “network functions.” Popular open-source
network functions include the Snort Intrusion Detection
System3 and the Squid Web Proxy.4

To deploy a new network function, a network
administrator traditionally purchases a specialized, fixed-
function hardware device (the middlebox) implementing,
for example, intrusion detection or caching, and physically

9 of 15

acmqueue | march-april 2016 85

research for practiceRFP

installs the device at a chokepoint in the network such that
all traffic entering or exiting the network must pass through
it. Alternatively, an administrator might use an off-the-shelf
server as a middlebox, installing software such as Snort,
Squid, or a proprietary software package, and then routing
traffic through the server at a chokepoint in the network.

NFV (network functions virtualization) is a new movement
in networking that takes the software-based approach to
an extreme. The NFV ISG (industry specification group)
envisions a future in which all middlebox functionality
is implemented in software.2 Network administrators
will deploy a server or cluster of servers dedicated to
network functions, and network virtualization software
will automatically route traffic through various network
functions.

NFV promises many benefits for network administrators.
It reduces costs by moving from special-purpose to general-
purpose hardware, makes upgrades as easy as a software
patch, offers the opportunity to scale on demand, and
promises more efficient installations with multiple network
functions potentially sharing a single server, leaving few
resources wasted. NFV has tremendous momentum in the
networking community—the NFV working group has more
than 200 industrial members1—but is in its infancy and was
founded only in late 2012.

Here we present three highlights from the research
community on middleboxes and NFV, and conclude by
discussing some of the challenges and opportunities that

10 of 15

acmqueue | march-april 2016 86

research for practiceRFP

NFV presents for application developers.

What capabilities do network functions implement?
Carpenter, B., Brim, S. 2002. Middleboxes: taxonomy and
issues. RFC 3234, IETF.
https://tools.ietf.org/html/rfc3234

Though it predates NFV by about a decade, this article
remains a nice summary of the features for which
middleboxes are commonly deployed. The document could
have gone into more depth about application-layer behaviors
such as exfiltration detection or intrusion detection—
increasingly common in today’s corporate networks—but
these behaviors are more common today than they were in
2002 when the article was written. Nonetheless, it remains
the most comprehensive survey of middlebox functionality to
date, and most of the features it describes remain in common
use.

What does an NFV-managed network look like?
Palkar, S., Lan, C., et al. 2015. E2: a framework for NFV
Applications. ACM Symposium on Operating Systems
Principles.
http://dl.acm.org/citation.cfm?id=2815423

This article provides the cleanest vision for an NFV-managed
cluster to date. The authors describe a system called E2,
which automatically schedules and configures network
functions on a cluster of general-purpose servers. E2 allows

11 of 15

acmqueue | march-april 2016 87

research for practiceRFP

a network administrator to specify a “configuration” (e.g., all
traffic on port 80 should be routed through this HTTP proxy,
all traffic to this subnet should be processed by an IDS),
and the framework will automatically instantiate software
instances and a routing configuration to ensure that the
policy is met. E2 is conceptually similar to cloud frameworks
such as OpenStack or RightScale but in practice involves
many different technical challenges, including scheduling
to ensure that bandwidth is not overutilized, ensuring low
latency, and enabling efficient communication and “chaining”
between network functions.

Can I control how network functions process my traffic?
Naylor, D., et al. 2015. Multi-Context TLS (mcTLS): enabling
secure in-network functionality in TLS. ACM SIGCOMM.
http://dl.acm.org/citation.cfm?id=2787482 [link to http://queue.
acm.org/rfp/vol14iss2.html]
Sherry, J., et al. 2015. BlindBox: deep packet inspection over
encrypted traffic. ACM SIGCOMM.
http://dl.acm.org/citation.cfm?id=2787502 [link to http://queue.
acm.org/rfp/vol14iss2.html]

Today, application developers have no way of controlling
which network functions process their traffic, short of
making a phone call to their network administrators.
Nonetheless, developers may have concerns about
inspection or modification of traffic sent by their
applications—especially with regard to privacy. Hence,
many developers choose to encrypt their entire connection

12 of 15

http://dl.acm.org/citation.cfm?id=2787482
http://dl.acm.org/citation.cfm?id=2787502

acmqueue | march-april 2016 88

research for practiceRFP

(e.g., using SSL/TLS). While this preserves privacy, it also
prevents all benefits of middlebox processing. These two
articles propose new cryptographic protocols, mcTLS and
BlindBox, that would let application developers allow certain
middlebox operations but restrict others. The two articles
propose very different approaches to the same problem and
are worth reading side by side.

What does NFV mean for application developers?
As NFV makes the deployment and configuration of network
functions/middleboxes easier, application developers can
expect to see increasingly complex behavior from their
networks. While this capability for complex behavior retains
some of the old challenges of middleboxes (e.g., privacy),
it also introduces a huge new opportunity for application
developers. NFV enables application developers to run and
execute their code not only on end hosts they maintain, but
also in the network itself.

For example, a developer who designs a custom load-
balancing filter based on a unique service architecture
might write the new code to run on the load balancer itself.
A web service may implement a custom cache to serve
encrypted content to its users, deploying the in-network
cache within its customers’ ISPs within virtual machines
hosted in the provider’s infrastructure. With the ability to
execute arbitrary code in the network—and smart routing
and scheduling to ensure that the right traffic receives
such processing—NFV opens an entirely new programming
platform for developers. The next big app store may be for

13 of 15

acmqueue | march-april 2016 89

research for practiceRFP

features deployed within data-center networks, ISPs, or even
on home routers.

References
1. �NFV ISG. List of members; https://portal.etsi.org/

TBSiteMap/NFV/NFVMembership.aspx.
2. �NFV ISG. 2012. Network functions virtualization: an

introduction, benefits, enablers, challenges, and call for
action; https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

3. �Snort; https://www.snort.org/.
4. �Squid; http://www.squid-cache.org/.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Peter Bailis will join Stanford University as an assistant
professor of computer science, after spending the academic
year visiting MIT CSAIL. He received a Ph.D. in computer
science from UC Berkeley in 2015 and an A.B. in computer
science from Harvard in 2011. His research in the Future Data
Systems group (http://futuredata.stanford.edu/) focuses on the
design and implementation of next-generation data-intensive
systems.

Justine Sherry is a doctoral candidate at UC Berkeley. Her
interests are in computer networking; her work includes
middleboxes, networked systems, measurement, cloud
computing, and congestion control. Sherry’s dissertation
focuses on new opportunities and challenges arising from the
deployment of middleboxes—such as firewalls and proxies—as
services offered by clouds and ISPs. She received an M.S. from

14 of 15

https://portal.etsi.org/TBSiteMap/NFV/NFVMembership.aspx
https://portal.etsi.org/TBSiteMap/NFV/NFVMembership.aspx
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.snort.org/
http://www.squid-cache.org/
mailto:mailto:feedback%40queue.acm.org?subject=
http://futuredata.stanford.edu/

acmqueue | march-april 2016 90

research for practiceRFP

UC Berkeley in 2012 and a B.S. and B.A. from the University
of Washington in 2010. She is a National Science Foundation
Graduate Research Fellow, has won paper awards from
both Usenix NSDI and ACM SIGCOMM, and is always on the
lookout for a great cappuccino.

Simon Peter is an assistant professor at the University of
Texas at Austin, where he leads research in operating systems
and networks. He received a Ph.D. in computer science from
ETH Zurich in 2012 and an M.S. in computer science from the
Carl-von-Ossietzky University in Oldenburg, Germany, in
2006. Before joining UT Austin in 2016, he was a research
associate at the University of Washington from 2012-2016.
For his work on high-I/O-performance operating systems,
he received the Jay Lepreau best paper award (2014) and
the Madrona prize (2014). He has conducted further award-
winning systems research at various locations, including MSR
SVC and Cambridge, Intel Labs, and UC Riverside.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

15 of 15

CONTENTS2

